Nitrous acid, hno2, has an acid dissociation constant - ka of 7. 1 ✕ 10-4. what are [h3o ], [no2-], and [oh -] in 0. 40 m hno2 - 4829 M [OH^-] = 1.439 x 10^-14 M
The acid dissociation constant (Ka) is used to differentiate between strong and weak acids. Strong acids have very high Ka values. The Ka value is determined by examining the equilibrium constant for acid dissociation. The acid dissociates more readily as the Ka increases.
The original molecular definition of an acid, according to Arrhenius, is a molecule that dissociates in an aqueous solution, releasing the hydrogen ion H+ (a proton): HA A + H+. acid dissociation constant is an equilibrium constant for this dissociation reaction.
To learn more about acid dissociation constant please visit -
brainly.com/question/4363472
#SPJ4
The theory of evolution was proposed by Darwin.
Answer:
42.65g
Explanation:
Given parameters:
Mass of K = 4g
Unknown: Mass of KCl
Solution:
Complete equation of the reaction:
2K + Cl₂ → 2KCl
To solve this problem, we know that the reactant in short supply is potassium K and this dictates the amount of products that would be formed. The chlorine gas is in excess and we can't use it to determine the amount of product that would form.
Now, we work from the known to the unknown. Since we know the mass of K given in the reaction, we can simply find the molar relationship between the reacting potassium and the product. We simply convert the mass to mole and compare to the product. From there we can find the mass of KCl that would be produced.
Calculating number of moles of K
Number of moles = 
Number of moles of K =
= 0.103mol
From the given reaction equation:
2 moles of K will produce 2 moles of KCl
Therefore 0.103mol of K will produce 0.103mol of KCl
To find the mass of KCl produced,
Mass of KCl = number of moles of KCl x molar mass
Molar mass of KCl = 39 + 35.5 = 74.5gmol⁻¹
Mass of KCl = 0.103 x 74.5 = 42.65g
Answer: The correct option is (c). The total pressure doubles.
Solution:
Initially, only 4 moles of oxygen gas were present in the flask.
(
) ( according to Dalton's law of partial pressure)
....(1)
= Total pressure when only oxygen gas was present.
Final total pressure when 4 moles of helium gas were added:

partial pressure of oxygen in the mixture :
Since, the number of moles of oxygen remains the same, the partial pressure of oxygen will also remain the same in the mixture.

= Total pressure of the mixture.
from (1)

On rearranging, we get:

The new total pressure will be twice of initial total pressure.