C) 2:3 and 12:18
bcs you put them in fraction form and cross multiply them
Answer:
36
Step-by-step explanation:
180/5 is 36.
To double check, you can multiply 36 by 5, which gives you 180.
Answer:
6 7/8 minutes
Step-by-step explanation:
Say the entertainment segments are each x minutes long. Then, we have the equation:
x + x + 1 1/4 = 15
2x + 1 1/4 = 15
2x = 15 - 1 1/4
We need a common denominator. 1 1/4 = 5/4 and 15 = 60/4, so we now have:
60/4 - 5/4 = 55/4. Then: 2x = 55/4
Divide by 2 from both sides:
(55/4) / 2 = 55/8 = 6 7/8
Thus, each entertainment segment is 6 7/8 minutes long.
Hope this helps!
Answer:
y = 3x - 1
Step-by-step explanation:
Although the coordinate plane is not given, we don't need it to find the solution. We have given all the conditions enough for the solution.
The y-intercept is (-1) and the function passes through the point ( 1, 2 ).
Only the function y = 3x -1 matches these conditions.
We can observe the points in the attached graph.
Answer:
![\left[\begin{array}{ccc}3&-5 &|12\\4&-2 &|15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%20%20%26%7C12%5C%5C4%26-2%20%20%26%7C15%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
When making a matrix of two equations with the variables x and y, the result will be a matrix with three columns:
- a column for the values of x in each equation
- a column for the values of y in each equation
- a column for the independent values of each equation
since our system of equations is:

we can see that the value for x in the first equation is 3 and in the second equation is 4, thus the first column will have the numbers 3 and 4:
![\left[\begin{array}{ccc}3&&\\4&&\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26%26%5C%5C4%26%26%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now for the values of y we hvae -5 in the first equation and -2 in the second equation, we update the matrix with another column with the values of -5 and -2:
![\left[\begin{array}{ccc}3&-5&\\4&-2&\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%26%5C%5C4%26-2%26%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Finally, the last column is the independent values of each equation (or the results) in the first equation that number is 12 and in the second equation is 15, thus the matrix is:
![\left[\begin{array}{ccc}3&-5&12\\4&-2&15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%2612%5C%5C4%26-2%2615%5C%5C%5Cend%7Barray%7D%5Cright%5D)
usually there is a line separating the columns for the values of x and y, and the independent values:
![\left[\begin{array}{ccc}3&-5 &|12\\4&-2 &|15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%20%20%26%7C12%5C%5C4%26-2%20%20%26%7C15%5C%5C%5Cend%7Barray%7D%5Cright%5D)
this is the matrix of the system of equations