A group of cells together
Answer:
<em><u>172,000 second </u></em>
<em><u>I'M</u></em><em><u> </u></em><em><u>NOT</u></em><em><u> </u></em><em><u>SURE</u></em><em><u> </u></em><em><u>THAT</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>RIGHT</u></em><em><u> </u></em><em><u>OR</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u> </u></em><em><u>IF</u></em><em><u> </u></em><em><u>IT'S</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u>THEN</u></em><em><u> </u></em><em><u>SORRY</u></em><em><u> </u></em>
Answer:
8.8 cm
31.422 cm/s
Explanation:
m = Mass of block = 0.6 kg
k = Spring constant = 15 N/m
x = Compression of spring
v = Velocity of block
A = Amplitude
As the energy of the system is conserved we have

Amplitude of the oscillations is 8.8 cm
At x = 0.7 A
Again, as the energy of the system is conserved we have

The block's speed is 31.422 cm/s
This is an example of resonance - when one object vibrating at the same natural frequency of a second object forces that second object into vibrational motion. The result of resonance is always a large vibration.
Answer D. Forced vibrations, such as those between a tuning fork and a large cabinet surface, result in a much lower sound than was produced by the original vibrating body Because this statement contridicts the above statement, it is not accurate
<span>Reducing the distance between them. In theory, also increasing the mass; but you can't really change the mass of an object. However, you can compare the forces if you replace an object by a different object, which has a different mass.
</span>
i hope this will work..