Sorry bro I don’t know the answer plz search in browser
A “supersaturated” solution contains more dissolved material. supersaturated solutions lies in the temperature of the water. more sugar will dissolve in hot water than in cold. Meaning that by separating the 2, only the supersaturated sugar would dissolve leaving the regular sugar untouched.
Hydrogen and Helium cannot bond together. Put aside the inertness of helium (or all noble gases), bond formation is only favored when the final state of the two elements is more stable than their initial state. ... Helium compounds has some predictions though none of them contain only those two elements.
Answer:
The ratio 35Cl/37Cl = 3/1
Explanation:
<u>Step 1:</u> Data given
Chlorine has 2 isotopes:
- mass = 35 g/mol
- mass = 37 g/mol
Average molar mass of chlorine = 35.5 grams
<u>Step 2: </u>Calculate the % of isotopes
35x + 37y = 35.5
x+y = 1 or x = 1-y
35(1-y) + 37y = 35.5
35-35y +37y = 35.5
0.5 = 2y
y = 0.25 = 37Cl
x = 1 - 0.25 = 0.75 = 35Cl
<u>Step 3: </u>
The ratio 35Cl/37Cl = 0.75/0.25 = 3/1
Answer:
E) Two of the above statements are true.
Explanation:
The options are:
A) Before the solution is titrated with HCl it is pink and when the color changes from pink to colorless, the moles of H*(aq) equals the moles of OH"(aq) used in the hydrolysis of the neutralized aspirin. <em>TRUE. </em>Before the solution is titrated, there is an excess of NaOH (Basic solution, phenolphtalein is pink). Then, at equivalence point, after the addition of HCl, the pH is acidic and phenolphtalein is colorless.
B) Before the solution is titrated with HCl it is colorless and when the color changes from colorless to pink, the moles of H*(aq) equals the excess moles of OH(aq) added. <em>FALSE. </em>As was explained, before the titration, the solution is pink.
C) 25.0 mL of 0.100 M NaOH was added to the sample to hydrolyze the neutralized aspirin in the solution. The titration with HCl allows us to determine the moles of excess OH(aq) added. Once we determine the moles of excess OH(aq), we can determine moles of OH"(aq) used in the hydrolysis of the neutralized aspirin, which is equal to the moles of aspirin in the recrystallized aspirin. <em>TRUE. </em>Aspirin requires an excess of base (NaOH) for a complete dissolution (Hydrolysis). Then, we add H+ as HCl to know the excess moles of OH-. As we know the added moles of OH-, we can find the moles of OH that reacted = Moles of aspirin.
D) We can determine the moles of aspirin in the recrystallized aspirin by titrating with the 0.100 M NaOH to the neutralization point. The purpose of the hydrolysis of the neutralized aspirin and the back-titration with the 0.100 M HCl is to confirm the moles of aspirin in the recrystallized aspirin. <em>FALSE. </em>NaOH can be added directly unyil neutralization point because, initially, aspirin can't be dissolved completely
E) Two of the above statements are true. <em>TRUE</em>
<em></em>
Right option is:
<h3>E) Two of the above statements are true.</h3>