Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:

Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Procedures that are likely a chemical change are:
- Bubbles were produced when iron was placed in acid.
- Two liquids were combined, and a solid appeared
- A white substance turned blue when water was added.
Answer: Adding or removing energy from matter
Explanation:
Answer:
B) exothermic.
Explanation:
Hello!
In this case, we need to keep in mind that exothermic reactions release heat, so they increase the temperature as the final energy is less than the initial energy; in contrast, endothermic reactions absorb heat, so they decrease the temperature as the final energy is greater than the initial energy.
In such a way, when a dissolution process shows off a negative enthalpy of dissolution, we infer it is an exothermic process due to the aforementioned; therefore, the answer is:
B) exothermic
.
Best regards!
The grams that would be produced from 7.70 g of butanoic acid and excess ethanol is 7.923grams
calculation
Step 1: write the chemical equation for the reaction
CH3CH2CH2COOH + CH3CH2OH → CH3CH2CH2COOCH2CH3 +H2O
step 2: find the moles of butanoic acid
moles= mass/ molar mass
= 7.70 g/ 88 g/mol=0.0875 moles
Step 3: use the mole ratio to determine the moles of ethyl butyrate
moles ratio of CH3CH2CH2COOH :CH3CH2CH2COOCH2CH3 is 1:1 therefore the moles of CH3CH2CH2COOCH2CH3 = 0.0875 x78/100=0.0683moles
step 4: find mass = moles x molar mass
= 0.0683 moles x116 g/mol=7.923grams