1st find the pOH = 14 - 4.75 = 9.25
then do 10^-9.25 = 5.62x10^-10 OH- concentration
Answer: 1.
2. 3 moles of
: 2 moles of 
3. 0.33 moles of
: 0.92 moles of 
4.
is the limiting reagent and
is the excess reagent.
5. Theoretical yield of
is 29.3 g
Explanation:
To calculate the moles :

The balanced chemical equation is:
According to stoichiometry :
3 moles of
require = 2 moles of
Thus 0.33 moles of
will require=
of
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 3 moles of
give = 2 moles of
Thus 0.33 moles of
give =
of
Theoretical yield of
Thus 29.3 g of aluminium chloride is formed.
Calculating for the moles of H+
1.0 L x (1.00 mole / 1 L ) = 1 mole H+
From the given balanced equation, we can use the stoichiometric ratio to solve for the moles of PbCO3:
1 mole H+ x (1 mole PbCO3 / 2 moles H+) = 0.5 moles PbCO3
Converting the moles of PbCO3 to grams using the molecular weight of PbCO3
0.5 moles PbCO3 x (267 g PbCO3 / 1 mole PbCO3) = 84.5 g PbCO3
It is b i think bc it looks like it would be it and my tudor helped me
The answer for four is frequency.