Answer is A I hope it helps
Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
<span>The correct answer is option B. i.e UV Rays. The Ultra violet light is the part of electromagnetic light whose wavelength is less than the Visible light light. i.e. UV range is from 10 nm to 400 nm. UV light is invisible to the naked eye.</span>
I think it would be E. The higher the object the less wavelength is possible.
Answer: 
Explanation:
According to Newton's law of universal gravitation:
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
In this case we have two situations:
1) Two bags with masses
and
mutually exerting a gravitational attraction
on each other:
(1)
(2)
(3)
2) Two bags with masses
and
mutually exerting a gravitational attraction
on each other (assuming the distance between both bags is the same as situation 1):
(4)
(5)
(6)
Now, if we isolate
from (3):
(7)
Substituting
found in (7) in (6):
(8)
(9)
Simplifying, we finally get the expression for
in terms of
: