This leads to a paradox known as the Gibbs paradox, after Josiah Willard Gibbs. The paradox allows for the entropy of closed systems to decrease, violating the second law of thermodynamics. A related paradox is the "mixing paradox".
Answer:
Actually it's 2.50 m/s, sorry
Explanation:
It is solved by using momentum conservation equation
combined mass of crow and feeder = 450+670=1120 gm
let the recoil speed of feeder be v m/s
Then applying momentum conservation we get;
1120×1.5 = 670×v
v= 2.50 m/s
the speed at which the feeder initially recoils backwards = 2.50 m/s
Answer:
Explanation:
Let the forward displacement is taken is positive, and the backward displacement is taken is negative.
first displacement = + 18 cm
second displacement = - 6 cm
third displacement = - 12 cm
net displacement = 18 - 12 - 6 = 0 cm
Answer: 90 km/hr
Explanation:
Speed= distance divided by time
540/6
= 90km/hr
Answer:
Nuclear Forces
Explanation:
Because strong nuclear forces work best within shorter distance.