Answer:
(a) 89 m/s
(b) 11000 N
Explanation:
Note that answers are given to 2 significant figures which is what we have in the values in the question.
(a) Speed is given by the ratio of distance to time. In the question, the time given was the time it took the pulse to travel the length of the cable twice. Thus, the distance travelled is twice the length of the cable.

(b) The tension,
, is given by

where
is the speed,
is the tension and
is the mass per unit length.
Hence,

To determine
, we need to know the mass of the cable. We use the density formula:

where
is the mass and
is the volume.

If the length is denoted by
, then


The density of steel = 8050 kg/m3
The cable is approximately a cylinder with diameter 1.5 cm and length or height of 620 m. Its volume is




Answer:
The amount of energy carried by a wave is related to the amplitude of the wave
Explanation:
A high energy wave is characterized by a high amplitude; a low energy wave is characterized by a low amplitude. The energy imparted to a pulse will only affect the amplitude of that pulse.
Hope this helped!!!
Answer:
A.
Explanation:
I think it’s a. Because, I normally think about how someone else feels if I want to say something.
Explanation:
Gauss Law relates the distribution of electric charge to the resulting electric field.
Applying Gauss's Law,
EA = Q / ε₀
Where:
E is the magnitude of the electric field,
A is the cross-sectional area of the conducting sphere,
Q is the positive charge
ε₀ is the permittivity
We be considering cases for the specified regions.
<u>Case 1</u>: When r < R
The electric field is zero, since the enclosed charge is equal to zero
E(r) = 0
<u>Case 2</u>: When R < r < 2R
The enclosed charge equals to Q, then the electric field equals;
E(4πr²) = Q / ε₀
E = Q / 4πε₀r²
E = KQ /r²
Constant K = 1 / 4πε₀ = 9.0 × 10⁹ Nm²/C²
<u>Case 3</u>: When r > 2R
The enclosed charge equals to Q, then the electric field equals;
E(4πr²) = 2Q / ε₀
E = 2Q / 4πε₀r²
E = 2KQ /r²
Answer
given,
Radius of sphere = 6.38 × 10⁶ m
time = 1 day = 86400 s



a) at equator


v = 464 m/s
acceleration of the person



b) at a latitude of 61.0 ° north of the equator.






acceleration of the person


