Answer:
- Light is bounced back at same angle (Classical Reflection)
- Light penetrates medium at different angle due to different material densities (Refraction)
Light bounces at different angles in periodic grid (Reflected Diffraction)
Light enters medium at different angles through a grid (Transmission Diffraction)
- Light EMF field looses one axis component (Polarized filter)
Explanation:
Reflection is a phenomenon in which waves (light included) bounce back from an obstacle at the same angle of incidence
Refraction is the change in the angle of a wave as it enters the interface of two media. The change in angle is due to the difference in the densities of the two media.
Reflected diffraction occurs when an optical component with a periodic grid, splits, and diffracts light into several beams travelling in different directions. The light light bounces at an angle in the periodic grid.
Transmission diffraction is dispersion a beam of various wavelengths into a spectrum of associated lines due to the principle of diffraction. In this type of diffraction, light enters medium at different angles through a grid.
Polarized filters removes one field from the incidence electromagnetic wave like light, leaving it to vibrate in only one plane.
Answer:
Depth of field = 347.619 nm
Explanation:
wavelenght = 365nm
N.A =0.63
k1= 0.6
so we have that the resolution limit is:
R=k1*A
R=0.6*365
R=219 nm
and the Depth of field needed for the best resolution is:
DoF = Resolution / N.A.
DoF= R/N.A
DoF= 219/0.63
DoF= 347.619 nm
Question:
In a typical transmission line, the current I is very small and the voltage V is very large. A unit length of the line has resistance R.
For a power line that supplies power to 10 000 households, we can conclude that
a) IV < I²R
b) I²R = 0
c) IV = I²R
d) IV > I²R
e) I = V/R
Answer:
d) IV > I²R
Explanation:
In a typical transmission line, the current I is very small and the voltage V is very high as to minimize the I²R losses in the transmission line.
The power delivered to households is given by
P = IV
The losses in the transmission line are given by
Ploss = I²R
Therefore, the relation IV > I²R holds true, the power delivered to the consumers is always greater than the power lost in the transmission line.
Moreover, losses cannot be more than the power delivered. Losses cannot be zero since the transmission line has some resistance. The power delivered to the consumers is always greater than the power lost in the transmission.