<h3>
Answer:</h3>
Mike is involved in developing the model building codes that various states and local authorities in the United States adopt. He works with the <u>Workers</u> , which consists of members who are building code officials and building safety professionals.
Answer:
Vab = 80V
Explanation:
The only current flowing in the circuit is supplied by the 100 V source. Its only load is the 40+60 ohm series circuit attached, so the current in that loop is (100V)/(40+60Ω) = 1A. That means V1 = (1A)(60Ω) = 60V.
Vab will be the sum of voltages around the right-side "loop" between terminals 'a' and 'b'. It is (working clockwise from terminal 'b') ...
Vab = -10V +60V +(0A×10Ω) +30V
Vab = 80V
Answer:
I'm afraid i can't visualise it to you but visit the site below to help you out <3
Explanation:
https://opendsa-server.cs.vt.edu/embed/mergesortAV
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
E = 2940 J
Explanation:
It is given that,
Mass, m = 12 kg
Position at which the object is placed, h = 25 m
We need to find the potential energy of the mass. It is given by the formula as follows :
E = mgh
g is acceleration due to gravity

So, the potential energy of the mass is 2940 J.