1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
11

Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 270 K with a velocity of 180 m/s and e

xits with a velocity of 48.4 m/s. For negligible potential energy effects, determine the exit temperature in K. The exit velocity is 48.4 m/s.
Engineering
1 answer:
ZanzabumX [31]3 years ago
4 0

Answer:

exit temperature 285 K

Explanation:

given data

temperature T1 = 270 K

velocity = 180 m/s

exit velocity =  48.4 m/s

solution

we know here diffuser is insulated so here heat energy is negleted

so we write here energy balance equation that is

0 = m (h1-h2) + m ×  (\frac{v1^2}{2}-\frac{v2^2}{2})   .....................1

so it will be

h1 + \frac{v1^2}{2} = h2 + \frac{v2^2}{2}      .....................2

put here value by using ideal gas table

and here for temperature 270K

h1 = 270.11 kJ/kg

270.11 + \frac{180^2\times \frac{1}{1000}}{2} = h2 + \frac{48.4^2\times \frac{1}{1000}}{2}  

solve it we get

h2 = 285.14 kJ/kg

so by the ideal gas table we get

T2 = 285 K

You might be interested in
Find E[x] when x is sum of two fair dice?
Ksenya-84 [330]

Answer:

When two fair dice are rolled, 6×6=36 observations are obtained.

P(X=2)=P(1,1)=

36

1

​

P(X=3)=P(1,2)+P(2,1)=

36

2

​

=

18

1

​

P(X=4)=P(1,3)+P(2,2)+P(3,1)=

36

3

​

=

12

1

​

P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=

36

4

​

=

9

1

​

P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=

36

5

​

P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=

36

6

​

=

6

1

​

P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=

36

5

​

P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=

36

4

​

=

9

1

​

P(X=10)=P(4,6)+P(5,5)+P(6,4)=

36

3

​

=

12

1

​

P(X=11)=P(5,6)+P(6,5)=

36

2

​

=

18

1

​

P(X=12)=P(6,6)=

36

1

​

Therefore, the required probability distribution is as follows.

Then, E(X)=∑X

i

​

⋅P(X

i

​

)

=2×

36

1

​

+3×

18

1

​

+4×

12

1

​

+5×

9

1

​

+6×

36

5

​

+7×

6

1

​

+8×

36

5

​

+9×

9

1

​

+10×

12

1

​

+11×

18

1

​

+12×

36

1

​

=

18

1

​

+

6

1

​

+

3

1

​

+

9

5

​

+

6

5

​

+

6

7

​

+

9

10

​

+1+

6

5

​

+

18

11

​

+

3

1

​

=7

E(X

2

)=∑X

i

2

​

⋅P(X

i

​

)

=4×

36

1

​

+9×

18

1

​

+16×

12

1

​

+25×

9

1

​

+36×

36

5

​

+49×

6

1

​

+64×

36

5

​

+81×

9

1

​

+100×

12

1

​

+121×

18

1

​

+144×

36

1

​

=

9

1

​

+

2

1

​

+

3

4

​

+

9

25

​

+5+

6

49

​

+

9

80

​

+9+

3

25

​

+

18

121

​

+4

=

18

987

​

=

6

329

​

=54.833

Then, Var(X)=E(X

2

)−[E(X)]

2

=54.833−(7)

2

=54.833−49

=5.833

∴ Standard deviation =

Var(X)

​

=

5.833

​

=2.415

4 0
2 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
3 years ago
By adding "-once", one can form the noun form of the word "organize" is that true or false?​
denpristay [2]

Answer:

<h2>False </h2>

Explanation:

The noun form of organize is just adding letter r

7 0
2 years ago
Read 2 more answers
A two-dimensional flow field described by
Oduvanchick [21]

Answer:

the answer is

Explanation:

<h2>  We now focus on purely two-dimensional flows, in which the velocity takes the form </h2><h2>u(x, y, t) = u(x, y, t)i + v(x, y, t)j. (2.1) </h2><h2>With the velocity given by (2.1), the vorticity takes the form </h2><h2>ω = ∇ × u = </h2><h2> </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y </h2><h2>k. (2.2) </h2><h2>We assume throughout that the flow is irrotational, i.e. that ∇ × u ≡ 0 and hence </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y = 0. (2.3) </h2><h2>We have already shown in Section 1 that this condition implies the existence of a velocity </h2><h2>potential φ such that u ≡ ∇φ, that is </h2><h2>u = </h2><h2>∂φ </h2><h2>∂x, v = </h2><h2>∂φ </h2><h2>∂y . (2.4) </h2><h2>We also recall the definition of φ as </h2><h2>φ(x, y, t) = φ0(t) + Z x </h2><h2>0 </h2><h2>u · dx = φ0(t) + Z x </h2><h2>0 </h2><h2>(u dx + v dy), (2.5) </h2><h2>where the scalar function φ0(t) is arbitrary, and the value of φ(x, y, t) is independent </h2><h2>of the integration path chosen to join the origin 0 to the point x = (x, y). This fact is </h2><h2>even easier to establish when we restrict our attention to two dimensions. If we consider </h2><h2>two alternative paths, whose union forms a simple closed contour C in the (x, y)-plane, </h2><h2>Green’s Theorem implies that   </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2></h2><h2></h2>
5 0
3 years ago
Hogden is conducting an experiment to determine how much force it takes for a nail to puncture a tire, causing a flat. He uses f
SashulF [63]

Answer:

B

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the name of the model/shape below?
    5·2 answers
  • First step in solving frames in to solve support reactions when looking at the frame as a whole. a)- True b)-False
    9·1 answer
  • Supón que tienes que calcular el centro de gravedad de una pieza
    11·1 answer
  • Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
    11·1 answer
  • An electric power plant uses solid waste for fuel in the production of electricity. The cost Y in dollars per hour to produce el
    10·1 answer
  • Why excess air is required to burn a fuel completely
    8·2 answers
  • 4.7 If the maximum tensile force in any of the truss members must be limited to 22 kN, and the maximum compressive force must be
    9·1 answer
  • How do i play Fortnite on controller?
    6·2 answers
  • 1. Describe simply what will happen to an airplane in flight in the following conditions:
    6·1 answer
  • 8. What is the purpose of the 300 Log?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!