1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
3 years ago
6

A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend

to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.

Physics
1 answer:
GREYUIT [131]3 years ago
6 0

Answer:

The found acceleration in terms of h and t is:

a=\frac{h}{5(t_1)^2}

Explanation:

(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)

We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.

<h3></h3><h3>Stage 1</h3>

Constant acceleration, starts from rest.

Distance = y = \frac{1}{2}a(t_1)^2

Velocity = v_1=at_1

<h3>Stage 2</h3>

Constant velocity where

Velocity = v_o=v_1=at_1

Distance =

<h3>y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\</h3><h3 /><h3>Stage 3</h3>

Constant deceleration where

Velocity = v_0=v_1=at_1

Distance =

y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2

<h3>Total Height</h3>

Total height = y₁ + y₂ + y₃

Total height = \frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2

<h3 /><h3>Acceleration</h3>

Find acceleration by rearranging the found equation of total height.

Total Height = h

h = 5a(t₁)²

a=\frac{h}{5(t_1)^2}

You might be interested in
Describe how charge is transferred from the ruler to the metal rod.
spin [16.1K]
When the ruler is broughı near the inetal knob, it repels electrons in the metal. Electrons move away froni the ruler and down the metal rod. The knob now has a positive charge. The thin pieces of metal foil at the bottom of the metal rod now have a negative charge.
3 0
3 years ago
Read 2 more answers
A straight bar magnet is initially 4 cm long, with the north pole on the right and the south pole on the left. if you cut the ma
Greeley [361]
The right half will be a new bar magnet of 2cm with north pole on the right side and south pole on teh left.
6 0
3 years ago
How is work calculated when the force applied is not parallel to the displacement
Leno4ka [110]
Pretty sure it’s Force*Distance*Cos(theta)
7 0
3 years ago
Read 2 more answers
Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 mm away horizontal
Harrizon [31]

Answer:

a. 8.96 m/s b. 1.81 m

Explanation:

Here is the complete question.

a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.

What is her "takeoff" speed  v 0 ?

b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.  

If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?

a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.

So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.

b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45

R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.

So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m

8 0
3 years ago
A body is dropped from the roof of a 20 m high building by how much:
USPshnik [31]

Answer:

t = 2.01 s

Vf = 19.7 m/s

Explanation:

It's know through the International System that the earth's gravity is 9.8 m/s², then we have;

Data:

  • Height (h) = 20 m
  • Gravity (g) = 9.8 m/s²
  • Time (t) = ?
  • Final Velocity (Vf) = ?

==================================================================

Time

Use formula:

  • \boxed{t=\sqrt{\frac{2*h}{g}}}

Replace:

  • \boxed{t=\sqrt{\frac{2*20m}{9.8\frac{m}{s^{2}}}}}

Everything inside the root is solved first. So, we solve the multiplication of the numerator:

  • \boxed{t=\sqrt{\frac{40m}{9.8\frac{m}{s^{2}}}}}

It divides:

  • \boxed{t=\sqrt{4.08s}}

The square root is performed:

  • \boxed{t=2.01s}

==================================================================

Final Velocity

use formula:

  • Vf = g * t

Replace:

  • Vf = 9.8 m/s² * 2.01 s

Multiply:

  • Vf = 19.7 m/s

==================================================================

How long does it take to reach the ground?

Takes time to reach the ground in <u>2.01 seconds.</u>

How fast does it hit the ground?

Hits the ground with a speed of <u>19.7 meters per seconds.</u>

7 0
3 years ago
Other questions:
  • A boat in a race accelerates uniformly at 0.2 m/s² for 18 seconds to reach a final speed of 6 m/s. Work out the initial speed of
    14·1 answer
  • Why does the cyclist have less kinetic energy at position A than at position B?
    6·1 answer
  • What are 13 types of electric charge?
    15·1 answer
  • What does Hooke's law say about the relationship of a spring to the force applied to it?
    6·1 answer
  • Smog is a type of air pollution. It is a mixture of fog and smoke or other airborne pollutants such as exhaust fumes. What is a
    10·2 answers
  • How much force is needed to accelerate a 66 kg skier at 2 m/sec^2?
    13·1 answer
  • A digital speedometer constantly reads zero mph. Technician A says the problem may be the vehicle speed sensor. Technician B say
    11·1 answer
  • Which of the following best describes a consumer?
    6·1 answer
  • I need help!!!!!!!!!!!pleaseeeeeee
    6·1 answer
  • A pendulum has a mass of 0.060 kg swinging at a small angle from a light string, with a period of 1.4 s. What is the length of t
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!