Answer:
The correct option is;
A. Circular
Explanation:
Some of the light that impinges on the surface are reflected and the rest are transmitted to a different medium
At the surface of the next medium also, some of the light are transmitted while the others are reflected and refracted through the first medium
The speed of light (and hence the wavelength and color) refracted through the thin film is changed as the distance the refracted light travels through the thin film is increased as we move away from the point directly in the front view to some distance as the reflected light path from those distance to the eye is increased due to their inclination giving them a different wavelength which are all equal at a radial distance from the eye hence forming a circular fringes.
Answer: The correct option is A.
Explanation:
Inertia is a state of an object or body to maintain its state. It resists any change in its state.
Newton's first law of inertia: When an objects is in state of motion, it will remain its state of motion or if it is in state of rest then it will remain in rest unless it is acted upon by external motion.
In the given options, a ball sits motionless on the ground is good example of Newton's first law motion. No external force is acting in this case.
In options (B), (C) and (D) , the external force is acting.
Therefore, the correct option is A.
Answer:3.54ohms
Explanation: connection in parallel
1/Rt= 1/R1+1/R2+1/R3
1/Rt= 1/16+1/13+1/7
1/Rt= 91+112+208/1456
1/Rt= 411/1456
411Rt= 1456
Rt= 1456/411
Rt= 3.54ohms
<span>Mass doesn't change when the temperature
of the ball changes.
(Unless, of course, it gets so hot that it melts,
and part of it falls off
and rolls under the table.)</span>
<span>a) write a polynomial expression for the position of the particle at any time t greater or equal to zero.
</span>Position is found by integrating velocity:
<span>s(t) = (t^3)/3 - 4t^2 + 7t + c
</span>where c is a constant corresponding to the position at t=0. <span>
b) at what time(s) is the particle changing direction
</span>the particle changes direction whenever the velocity is zero; the velocity function equals
<span>(t-1)(t-7) a difference of squares so the zeros are 1 and 7, it changes direction at 1 second and 7 seconds. </span><span>
c) find the total distance traveled by the particle from t=0 and t=4
</span><span>s(0) = c
s(1) = 8/3 + c
s(4) = 64/3 - 64 + 28 + c.
</span>
from 0 to 1 the particle travels 8/3 units. From 1 to 4 it travels -(64/3 - 36 - 8/3) = (-(56/3 - 108/3))
<span>=-(-52/3) = 52/3 units
</span>
<span>so in total it travels 52/3 + 8/3 =20 units</span>