Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.
Gravitational force is given by, 
Where, m and M are the masses of the objects, R is the distance between them and G gravitational constant.
Gravitational force of the star on planet 1, 
Gravitational force of the star on planet 2, 
Ratio, 

Therefore, the gravitational force of the star on the planet 1 is three times that on planet 2.
Answer:
The proton has much greater mass
Explanation:
- Protons and electrons are part of an atom
- Proton exists inside nucleus whereas electron keep moving around the nucleus
- Electrons have negative charge where as protons have positive charge .
Probably for kind of the same reason that speed is expressed as a
relationship between two units. You know, like miles per hour .
I guess the only reason is because no single unit has been invented
to describe density.
The rate of doing work or using energy would always be expressed
as a relationship between two units ... we would say that the rate of
work is "(so many) joules per second". But the "watt" was invented,
so we can say "(so many) watts" instead.
So I guess you're right. Density could be simpler to describe
if we only had a unit for it. Then we wouldn't have to say "(so many)
grams per cubic centimeter". We would just say "(so many) (new unit)".
Let's try it out:
"Uhhh, pardon me Professor . . . I've been working late in the lab,
and I believe I've identified a new substance, hitherto unknown to
the scientific community, and totally unexpected. In its pure form,
the substance appears to be pink, it smells like butterscotch, and
its density is approximately 27.4 Brianas. I think it's time we published
these findings ... with your name as lead investigator, of course."
I like it !
Answer:
m = 35 g
Explanation:
The specific heat of a material can be calculated by the following formula:

where,
C = Specific Heat of Wax = 220 J/g
Q = Amount of Heat Supplied by the Heater = 7700 J
m = mass of wax melted = ?
Therefore,

<u>m = 35 g </u>