To solve this problem we will use the mathematical definition of the light years in metric terms, from there, through the kinematic equations of motion we will find the distance traveled as a function of the speed in proportion to the elapsed time. Therefore we have to
means Light Year
Then

If we have that

Where,
v = Velocity
x = Displacement
t = Time
We have that
= Speed of light





Therefore will take 14.399 years
Factor out 8 and then facotr and u get
8/9(9x+1)(9x-1
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.