Answer:
Magnetic fields exist near a magnet, farther away from a magnet, and within a magnet.
So, the answer is D. All of the above.
Let me know if this helps!
Answer:
The answer is D 100 newton
Explanation:
2.0m/s2 is d acceleration while the 50kg is the mass. Force = mass x acceleration. So f=50x2.so force is 100 newton
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
Answer:
5760 J
Explanation:
From the question given above, the following data were obtained:
Mass of block = 48 kg
Height (h) = 12 m
Gravitational field strength (g) = 10 N/Kg
Gravitational potential energy (PE) =?
The gravitational potential energy stored by the block can simply be obtained as follow:
PE = mgh
PE = 48 × 10 × 12
PE = 5760 J
Therefore, the gravitational potential energy stored by the block is 5760 J
Answer: A red supergiant
Explanation:
Red supergiants are the stars that have a supergiant luminosity which has a class of either K or M spectral type. In terms of volume, they are regarded as the largest stars on Earth even though they are not the most luminous.
Red supergiants are formed when a star collapses after the hydrogen fuel that the star has in its core runs out and
then fusion begins when the outer shells of hydrogen gets hot.