It channels erode wider fed by many tributaries and has more discharge and is less steep
Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Answer:
Frequency
Explanation:
Photons are the packet of energy. They are massless and chargeless particles. They travel in the vacuum with the speed of light. The energy of photon is given by :

Where
h = Planck's constant
= frequency of photon
Or 
c = speed of light
= wavelength of photon
From the above equation, it is clear that the energy of photon is directly proportional to its frequency.
Of the cliff?
Projectile motion
In the problem we are asked to find a height of certain cliff when a motorcycle stunt driver zoom out horizontally at the end the cliff at an initial velocity. So we will use one of the kinematics equation for projectile motion,
y
=
v
o
y
t
+
1
2
g
t
where
v
o
y
is just equal to zero since we can assume that the driver zooms out horizontally,
g
=
9.8
m
/
s
2
and
t
is time after