Answer:
0.208mole of CO2
Explanation:
First, let us calculate the number of mole of HC3H3O2 present.
Molarity of HC3H3O2 = 0.833 mol/L
Volume = 25 mL = 25/100 = 0.25L
Mole =?
Mole = Molarity x Volume
Mole = 0.833 x 0.25
Mole of HC3H3O2 = 0.208mole
Now, we can easily find the number of mole of CO2 produce by doing the following:
NaHCO3 + HC2H3O2 → NaC2H3O2 + H2O + CO2
From the equation,
1mole of HC2H3O2 produced 1 mole of CO2.
Therefore, 0.208mole of HC2H3O2 will also produce 0.208mole of CO2
Answer:
Number of moles of solute = 0.6 mole
Mass =13.8 g
Explanation:
Given data:
Number of moles of sodium = ?
Volume = 2.0 L
Molarity = 0.30 M
Mass in gram of sodium= ?
Solution:
<em>Number of moles:</em>
Molarity = number of moles of solute / volume in litter
Number of moles of solute = Molarity × volume in litter
Number of moles of solute = 0.30 M × 2.0 L
Number of moles of solute = 0.6 mole
<em>Mass in gram:</em>
Mass = Number of moles × molar mass
Mass = 0.6 mole× 23 g/mol
Mass =13.8 g
Its B addition
where an atom adds to the broken double bond of a hydrocarbon and saturates it
hope that helps
I would say C. petroleum
A is wrong
B is impractical for "mainly used"
D thats too expensive
All pieces will be 17 g/cm^3 because the density is not affected by cutting (assuming the rock is uniform).