Answer:
B₂
Explanation:
The limiting reactant is always a reactant. You can determine which reactant is limiting by identifying which has the smaller mole-to-mole ratio with the product. This ratio can be found via the coefficients of the balanced reaction.
4 A₂ + 3 B₂ ---> 6 AB
4 moles A₂
------------------ = mole-to-mole ratio A₂/AB
6 moles AB
3 moles B₂
------------------ = mole-to-mole ratio B₂/AB
6 moles AB
Since the mole-to-mole ratio between B₂ and AB is smaller, B₂ must be the limiting reactant.
Given:
Number of items = 25
Price per item = $18
<u>To determine:</u>
The total revenue
<u>Explanation:</u>
Total revenue = quantity * price per item
= 25 items * 18 dollar/ 1 item = $450
Ans: A) The total revenue is $450
Answer:
- <em>1.34 × 10²⁴ molecules</em>
Explanation:
To calculate the <em>number of molecules of sodium oxide that will be created if 275 grams of sodium reacts with excess oxygen</em>, use the chemical equation to calculate the number of moles and then multiply by Avogadro's number.
<u>1) Balanced chemical equation (given):</u>
<u>2) Mole ratio:</u>
<u>3) Calculate the number of moles in 275 g of Na:</u>
- n = mass in grams / molar mass
- mass of Na = 275 g
- molar mass of Na₂O = 61.9789 g/mol
- n = 275 g / 61.9789 g/mol = 4.437 mol of Na
<u>4) Set a proportion to find the number of moles of product (Na₂O):</u>
- 2 mol Na₂O / 4 mol Na = x / 4.437 mol Na
- x = 4.437 / 2 mol Na₂O = 2.2185 mol Na₂O
<u>5) Convert the number of moles to number of molecules:</u>
- # molecules = n × 6.022 × 10²³ molecules/mol = 2.2185 mol × 6.022 × 10²³ molecules/mol = 1.34 × 10²⁴ molecules (rounded to 3 significant figures).
Ask your teacher for a formula sheet so the way you would know the formula for volume then you can try to solve it hope that helps