Answer:
I don't know
Explanation:
Maybe they shouldn't copy each other
Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731
Answer:
The correct option here is the first option
Explanation:
Covalent bond is the bond that involves the sharing of electrons between the participating atoms. The electrons (in the outermost shells of the atoms) that are involved this sharing are called the "shared pair" while those electrons (in the outermost shells of the atoms) that are not involved in this sharing are called the "lone pair". Bonding eventually leads to each of the participating atoms achieving it's octet configuration.
Carbon will bind covalently with fluorine (to form carbon tetrafluoride) with each of the electrons on the outermost shell of the carbon been shared covalently with fluorine atoms (that also requires just one electron to achieve it's octet configuration). Thus, at the end, we would have one carbon atom being covalently linked to four flourine atoms.
D is the answer I believe.