<u>Answer:</u>
<em>The amount of energy needed when water at 72 degrees c freezes completely at 0 degrees c is
Joules</em>
<em></em>
<u>Explanation:</u>

where
= Final T - Initial T

=30125J
Q is the heat energy in Joules
c is the specific heat capacity (for water 1.0 cal/(g℃)) or 4.184 J/(g℃)
m is the mass of water
mass of water is assumed as 100 g (since not mentioned)
is the heat energy required for the phase change
=mass × heat of fusion

Total heat =
Total Heat = 30123J + 33600J
= 63725 J
=
Joules is the answer
Mass of sulfur combined - 4.69 g
Mass of gas produced is 15.81 g, therefore mass of fluorine is (15.81-4.69) = 11.12 g
Number of sulfur moles - 4.69 g/32 g/mol = 0.15 mol
Number of fluorine moles - 11.12 g/ 19 g/mol = 0.585 mol
divide both by least number of moles
S - 0.15/0.15 = 1
F - 0.585/0.15 = 3.9 rounded off is 4
ratio of S to F = 1:4Therefore formula of the gas is SF₄
The heat that is needed to raise the temperature of 78.4 g of aluminium from 19.4 °c to 98.6°c is 5600.77 j
<u><em>calculation</em></u>
Heat(Q) = mass(M) x specific heat capacity (C) x change in temperature(ΔT)
where;
Q=?
M = 78. 4 g
C=0.902 j/g/c
ΔT=98.6°c -19.4°c =79.2°c
Q is therefore = 78.4 g x 0.902 j/g/c x 79.2°c =5600.77 j
Answer:
C.) 3 is the correct answer