The speed of the object increases
Explanation:
We can answer this question by applying the work-energy theorem, which states that the work done on an object is equal to the change in kinetic energy of the object. Mathematically:

where
W is the work done on the object
are the final and initial kinetic energy of the object, respectively
m is the mass of the object
v is its final speed
u is its initial speed
In this case, the force does a positive amount of work on the object, so

This also implies that

And so

And therefore

which means that the speed of the object increases.
Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer
given,
Side of copper plate, L = 55 cm
Electric field, E = 82 kN/C
a) Charge density,σ = ?
using expression of charge density
σ = E x ε₀
ε₀ is Permittivity of free space = 8.85 x 10⁻¹² C²/Nm²
now,
σ = 82 x 10³ x 8.85 x 10⁻¹²
σ = 725.7 x 10⁻⁹ C/m²
σ = 725.7 nC/m²
change density on the plates are 725.7 nC/m² and -725.7 nC/m²
b) Total change on each faces
Q = σ A
Q = 725.7 x 10⁻⁹ x 0.55²
Q = 219.52 nC
Hence, charges on the faces of the plate are 219.52 nC and -219.52 nC
Answer:
A) 0.660 g/ml
B) 1.297 ml
C) 0.272 g
Explanation:
Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes. This is where density
appears as a physical characteristic property of matter that establishes a relationship between the mass
of a body or substance and the volume
it occupies:
(1)
Knowing this, let's begin with the answers:
<h2 /><h2>Answer A:</h2>
Here the mass is
and th volume
Solving (1) with these values:
(2)
(3)
<h2>Answer B:</h2>
In this case the mass of a sample is
and its density is
.
Isolating
from (1):
(4)
(5)
(5)
<h2>Answer C:</h2>
In this case the volume of a sample is
and its density is
.
Isolating
from (1):
(6)
(7)
(8)
The question is somewhat ambiguous.
-- It's hard to tell whether it's asking about '3 cubic meters'
or (3m)³ which is actually 27 cubic meters.
-- It's hard to tell whether it's asking about '100 cubic feet'
or (100 ft)³ which is actually 1 million cubic feet.
I'm going to make an assumption, and then proceed to
answer the question that I have invented.
I'm going to assume that the question is referring to
'three cubic meters' and 'one hundred cubic feet' .
OK. We'll obviously need to convert some units here.
I've decided to convert the meters into feet.
For 1 meter, I always use 3.28084 feet.
Then (1 meter)³ = 1 cubic meter = (3.28084 ft)³ = 35.31 cubic feet.
So 3 cubic meters = (3 x 35.31 cubic feet) = 105.9 cubic feet.
That's more volume than 100 cubic feet.