Answer:
SnH4
Explanation:
Because the melting point of SnH4 is higher than CH4
Answer:
A. Rock fragments are layered and pressurized over time.
Explanation:
Sedimentary rocks are derived from pre-existing rocks that have been subjected to agents of denudation, weathered, transported and deposited within a basin.
In the basin, the sediments are accumulated in their final resting position.
- Sediments are accumulated as layers on top of one another.
- The pressure of the sediment on top of another forces out water and presses the layers into sheets.
- Over time, the compression leads to lithification of the rock.
- During lithification, compaction and cementation occurs.
<u>Answer:</u> Electrons are taken up by
and they are lost by 
<u>Explanation:</u>
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously. It is also called the reaction where the exchange of electrons takes place.
An oxidation reaction is defined as the reaction in which a chemical species loses electrons takes place. In this reaction, the oxidation state of a substance gets increased.
A reduction reaction is defined as the reaction in which a chemical species gains electrons takes place. In this reaction, the oxidation state of a substance gets reduced.
For the given chemical reaction:

The half-reactions for this redox rection follows:
<u>Oxidation half-reaction:</u> 
<u>Reduction half-reaction:</u> 
Hence, electrons are taken up by
and they are lost by 
Answer:
1. Potassium, K.
2. Calcium, Ca.
3. Gallium, Ga.
4. Carbon, C.
5. Bromine, Br.
6. Barium, Ba.
7. Silicon, Si.
8. Gold, Au.
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
Additionally, the unit of measurement of the atomic radius of chemical elements is picometers (1 pm = 10 - 12 m).
1. Li or K: the atomic radius of lithium is 167 pm while that of potassium is 243 pm.
2. Ca or Ni: the atomic radius of calcium is 194 pm while that of nickel is 149 pm.
3. Ga or B: the atomic radius of gallium is 136 pm while that of boron is 87 pm.
4. O or C: the atomic radius of oxygen is 48 pm while that of carbon is 67 pm.
5. Cl or Br: the atomic radius of chlorine is 79 pm while that of bromine is 94 pm.
6. Be or Ba: the atomic radius of berryllium is 112 pm while that of barium is 253 pm.
7. Si or S: the atomic radius of silicon is 111 pm while that of sulphur is 88 pm.
8. Fe or Au: the atomic radius of iron is 156 pm while that of gold is 174 pm.