Answer:
3. 116.5 V
4. 119.6 V
Explanation:
3. Determination of the voltage.
Resistance (R) = 25 Ω
Current (I) = 4.66 A
Voltage (V) =?
V = IR
V = 4.66 × 25
V = 116.5 V
Thus, the voltage is 116.5 V
4. Determination of the voltage.
Current (I) = 9.80 A
Resistance (R) = 12.2 Ω
Voltage (V) =?
V = IR
V = 9.80 × 12.2
V = 119.6 V
Thus, the voltage is 119.6 V
Answer:
From Top to Bottom:
- Democritus coming up with the concept of an atom
- Dalton discovering that atoms are the smallest part of an element
- Rutherford discovering the nucleus of an atom
- Thomson discovering electrons
- Bohr modeling electrons orbiting the nucleus
- Schrodinger modeling electrons in the electron cloud
Explanation:
The best way to think about this is from the inside out. Democrats (who lived long before any of the other scientists mentioned) was the one who thought of the idea of the atom. - Therefore, this must be first because all other choices are elaborations on the idea that atoms exist. Next must be Dalton. Dalton saw atoms as "cannonballs" if you will; a solid mass. So then after that, Rutherford and his gold foil experiment (he discovered that some rays he shot through gold foil were deflected back; ie the existence of concentrated areas in an atom, ie the nucleus). Then we get into the information on electrons. We must start with discovery (Thomson). Heres where it gets complicated. Electrons don't <em>actually </em>orbit the nucleus, they exist in electron clouds. So it would be Bohr, who came up with the idea that electron exist outside the nucleus, then Schrodinger, who elaborated on Bohr's theory. Hope this helps!
Nat, Junior
Accel + AP Chem student
This question seems to be an essay question from experiment. Different solution of oxidizing agent will have different strength. Sulfuric acid or H2SO4 is weaker oxidizing agent when compared to nitric acid (HNO3). In this case, if you subtitute the H2SO4 you wouldn't be able to get the same result for the experiment.
Answer:
0.6258 g
Explanation:
To determine the number grams of aluminum in the above reaction;
- determine the number of moles of HCl
- determine the mole ratio,
- use the mole ratio to calculate the number of moles of aluminum.
- use RFM of Aluminum to determine the grams required.
<u>Moles </u><u>of </u><u>HCl</u>
35 mL of 2.0 M HCl
2 moles of HCl is contained in 1000 mL
x moles of HCl is contained in 35 mL

We have 0.07 moles of HCl.
<u>Mole </u><u>ratio</u>
6HCl(aq) + 2Al(s) --> 2AlCl3(aq) + 3H2(g)
Hence mole ratio = 6 : 2 (HCl : Al
- but moles of HCl is 0.07, therefore the moles of Al;

Therefore we have 0.0233333 moles of aluminum.
<u>Grams of </u><u>Aluminum</u>
We use the formula;

The RFM (Relative formula mass) of aluminum is 26.982g/mol.
Substitute values into the formula;

The number of grams of aluminum required to react with HCl is 0.6258 g.
Answer:
1
Explanation:
For an ideal gas, the average kinetic energy is given by:
Ek = (3/2)*n*R*T
Where n is the number of moles, R is the gas constant (8.31 J/mol*K), and T the temperature. The gases have the same number of moles, and the same temperature, so they will have the same average kinetic energy:
Ek = (3/2)*1*8.31*300
Ek =3739.5 J
So, the ratio between then is 1.