In gaseous particles are slightly lighter than those in pasma which look like liquid
A reaction between to acids
Answer: 0.4533mol/L
Explanation:
Molar Mass of CaCO3 = 40+12+(16x3) = 40+12+48 = 100g/mol
68g of CaCO3 dissolves in 1.5L of solution.
Xg of CaCO3 will dissolve in 1L i.e
Xg of CaCO3 = 68/1.5 = 45.33g/L
Molarity = Mass conc.(g/L) / molar Mass
Molarity = 45.33/100 = 0.4533mol/L
Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows: