I think the question should be the below:
<span>What is the total distance, side to side, that the top of the building moves during such an oscillation?
</span>
Answer is the below:
<span>Acceleration .. a = (-) ω² x </span>
<span>(ω = equivalent ang. vel. = 2π.f) (x = displacement from equilibrium position) </span>
<span>x (max) = a(max) /ω² </span>
<span>x = (0.015 x 9.8m/s²) / (2π.f)² .. .. (0.147) / (2π*0.22)² .. .. ►x(max) = 0.077m .. (7.70cm)</span>
Answer:

Explanation:
<u>Elastic Potential Energy
</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.
Solving for Δx:

Substituting:

Calculating:


The answer is D. Isotopes.
Hope that helped.
Well, Harry, what you said is not necessarily true the way you said it.
But we know what you mean, and what you meant to say is true.
The Doppler effect is observed if there is relative radial motion
between an object and an observer <em><u>AND</u></em> if the object happens
to be putting out sound or light in the observer's direction.