Answer:
the fraction of submerged volume is equal to the ratio of the densities of the body between the density of the fluid.
Explanation:
This is a fluid mechanics problem, where as the boat is in equilibrium with the pushing force we can write Newton's second law
B- W = 0
B = W
the thrust force is equal to the weight of the liquid that is dislodged
B = ρ g V
we substitute
ρ g V = m g
V = m /ρ_fluid 1
we can write the mass of the pot as a function of its density
ρ_body = m / V_body
m = ρ_body V_body
V_fluid / V_body = ρ_body / ρ _fluid 2
Equations 1 and 2 are similar, although 2 is easier to analyze, the fraction of submerged volume is equal to the ratio of the densities of the body between the density of the fluid.
The effect appears the pot as if it had a lower apparent weight
Answer:
he will see the sticker because its behind a window bruh and thats a big daddy stack of greens
Explanation:
Answer:
3.974 Joule
Explanation:
Diameter of ring = 7.7 cm
a = Distance from the center = d/2 = 3.85 cm = 0.0385 m
Q = Charge = 5 mC
q = Charge to move = 3.4 mC
k = Coulomb constant = 9×10⁹ Nm²/C²
Work done will be equal to Potential energy when mass is at center

∴ Work to move a tiny 3.4 mC charge from very far away to the center of the ring is 3.974 Joule
Answer: 
Explanation:
Let's begin by explaining that according to Kepler’s Third Law of Planetary motion “The square of the orbital period
of a planet is proportional to the cube of the semi-major axis
of its orbit”:
(1)
Now, if
is measured in years (Earth years), and
is measured in astronomical units (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
So, knowing
and isolating
from (2) we have:
(3)
(4)
Finally:
T
his is the distance between the dwarf planet and the Sun in astronomical units
Converting this to kilometers, we have:

Answer: 5.31 meters
Explanation: Use conservation of energy. Initial energy equals final energy. Initially, there is only kinetic energy (because height = 0 initially). At the end, kinetic energy equals 0 because at max height, there is max potential energy and the ball stops moving for a split second.
mgh = .5mv^2
Masses cancel out
gh = .5v^2
(9.8)(h) = .5(10.2^2)
Solve for h. h = 5.31 meters