Answer:
18375g
Explanation:


Let's find the volume of the rectangular block.
Volume
= length ×breadth ×height
= 3.5 ×6 ×2.5
= 52.5cm³
Mass of the block
= 350(52.5)
= 18375g
Answer:
The temperature of the Aluminium plate 44.84⁰C
Explanation:
Number of transistors = 4
Since the heat dissipated by each transistor is 12W
Total heat dissipated, Q = 4 * 12 = 48 W
Q = 48 W
Cross sectional Area of the Aluminium plate, A = 2(l * b)
l = Length of the aluminium plate = 22 cm = 0.22 m
b = width of the aluminium plate = 22 cm = 0.22 m
A =2( 0.22 * 0.22 )
A = 0.0968 m²
From the heat balance equation, Q = hAΔT
h = 25 W/m²·K
A = 0.0968 m²
ΔT = T - T(air)
T(air) = 25°C
ΔT = T - 25°C
Q = 25 * 0.0968 * ( T - 25)
Q = 2.42 (T - 25)
Substitute Q = 48 into the equation above
48 = 2.42 (T - 25)
T - 25 = 19.84
T = 25 + 19.84
T = 44.84 ⁰C
Force applied on the car due to engine is given as
towards right
Also there is a force on the car towards left due to air drag
towards left
now the net force on the car will be given as

now we can say that since the two forces are here opposite in direction so here the vector sum of two forces will be the algebraic difference of the two forces.
So we can say



So here net force on the car will be 150 N towards right and hence it will accelerate due to same force.
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change