Answer:
The velocity of the motorboat after 6s is 24 m/s.
Explanation:
Given;
acceleration of the motorboat, a = 4.0 m/s²
initial velocity of the motorboat, u = 0
time of motion of the motorboat = 6s
Apply the following kinematic equation to determine the velocity of the motorboat after 6 ;
v = u + at
v = 0 + (4 x 6)
v = 24 m/s
Therefore, the velocity of the motorboat after 6s is 24 m/s.
Based on the given, this is probably a gravitational potential energy problem (PEgrav). The formula for PEgrav is:
PEgrav = mgh
Where:
m = mass (kg)
g = acceleration due to gravity
h = height (m)
With this formula you can derive the formula for your unknown, which is mass. First put in what you know and then solve for what you do not know.

![30J=m(10)(10[tex] \frac{30}{100} =m](https://tex.z-dn.net/?f=30J%3Dm%2810%29%2810%5Btex%5D%20%5Cfrac%7B30%7D%7B100%7D%20%3Dm)
)[/tex]
Do operations that you can with what is given first.

Transpose the 100 to the other side of the equation. Do not forget that when you transpose, you do the opposite operation.
m = 0.30kg
The turn signal indicator should be activated at least FIVE SECONDS before merging. This is done in order to let the other drivers behind you know that you want to turn and to slow down for you, this keeps you and other road users safe and prevent accident.
Answer:
the displacement is zero and the distance is 100 meters
Explanation:
Answer:
It would because the shape of the rocket is designed to be able to slice through the air as smooth as possible and now you may be thinking that air is already smooth but when you try to push something as large and heavy like a rocket then the shape of the rocket will be very important. The bottom of the rocket is flatter then the top so it is not designed to fly smoothly through the air. So the rocket would fall vertically downward(If it was still in one piece)because of it's shape. It is easier for the top of the rocket to go smoothly through the air then the bottom.
Explanation:
I am 90% sure this is correct but if I'm not please tell me