Answer:
An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes. If an object's velocity is constant, however, its acceleration will be zero.
Answer:
41.2°
Explanation:
Total internal reflection is the reflection of the incident ray at the interface between two media in which one of the media has a lower refractive index than the other. It occurs when the angle of incidence in the denser medium exceeds the critical angle.
The critical angle is the angle of incidence in the denser medium when the angle of incidence in the less dense medium is 90°.
Since
n= 1/sin C
C= sin^-(1/n)
C= sin^-(1/1.33)
C= 48.8°
Hence angle of incidence= 90-48.8 = 41.2°
The new acceleration is 
Explanation:
We can answer this problem by applying Newton's second law, which states that:

where
F is the net force on an object
m is the mass of the object
a is its acceleration
The equation can be rewritten as

In this problem, the initial acceleration is

Later:
- The net force is tripled: 
- The mass is halved: 
Therefore, the new acceleration is:

which means that the new acceleration is 6 times the original acceleration, therefore

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
The kinetic molecular theory of matter states that: Matter is made up of particles that are constantly moving. All particles have energy, but the energy varies depending on the temperature the sample of matter is in. This in turn determines whether the substance exists in the solid, liquid, or gaseous state.
Answer:
Explanation:
given
T = 3months = 7.9 × 10⁶s
orbital speed = 88 × 10³m/s
V= 2πr÷T
∴ r = (V×T) ÷ 2π
r = (88km × 7.9 × 10⁶s) ÷ 2π
r = 1.10 × 10⁸km
using kepler's 3rd law
mass of both stars = (seperation diatance)³/(orbital speed)²
M₁ + M₂ = (2r)³/(
year)²
= (1.06 × 10²⁵)/(6.2×10¹³)
1.71×10¹²kg
since M₁ = M₂ =1.71×10¹²kg ÷ 2
M₁ = M₂ = 8.55×10¹¹kg