1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
QveST [7]
3 years ago
6

Suppose you were a heating engineer and you wished to consider a house as a dynamic system. Without a heater, the average temper

ature in the house would clearly vary over a 24-h period. What might you consider for inputs, outputs, and state variables for a simple dynamic model? How would you expand your model so that it would predict temperatures in several rooms of the house? How does the installation of a thermostatically controlled heater change your model?
Engineering
1 answer:
liq [111]3 years ago
6 0

Answer:

As a heating engineer and considering a house as a dynamic system , and that without a heater, the average temperature in the house would vary over a 24-h period.

What might you consider for inputs, outputs, and state variables for a simple dynamic model?

State variables: according to the weather conditions of the area where the house was built:

State variable # 1: minimum temperture during a day in an specific season (*4);

State variable # 2: maximum temperature during the day, in an specific season (*4) as well;

State variable # 3: average temperature during the day in an specific season (*4).

That makes 16 state variables all of them in Centigrade degrees.

Input variables:

# 1: one degree over each of the state variables given.

# 2: one degree below each of the state variables, all of them in Centigrade           degrees.

Output variables:

# 1 are the temperatures reached after adding one degree to each of the input variables.

# 2 are the temperatures reached after decreasing one degree, all of them in Centigrade degrees.

How would you expand your model so that it would predict temperatures in several rooms of the house?

I would add output variables in a "Y" system to predict temperatures in several rooms of the house.

How does the installation of a thermostatically controlled heater change your model?

It would change on the "Y" variables as they will get a control system  designed for sensors to produce from some input variables to make the system respond.

Explanation:

State-determined system models using well defined physical systems is of highly interest to engineers.

You might be interested in
True or False: The differential lock in an AWD-equipped vehicle can be used at any time.
Bingel [31]

the answer would be false

7 0
2 years ago
Read 2 more answers
Q1. (20 marks) Entropy Analysis of the heat engine: consider a 35% efficient heat engine operating between a large, high- temper
Anvisha [2.4K]

The rate of gain for the high reservoir would be 780 kj/s.

A. η = 35%

\frac{w}{Q1} = \frac{35}{100}

W = 1.2*\frac{35}{100}*1000kj/s

W = 420 kj/s

Q2 = Q1-W

= 1200-420

= 780 kJ/S

<h3>What is the workdone by this engine?</h3>

B. W = 420 kj/s

= 420x1000 w

= 4.2x10⁵W

The work done is 4.2x10⁵W

c. 780/308 - 1200/1000

= 2.532 - 1.2

= 1.332kj

The total enthropy gain is 1.332kj

D. Q1 = 1200

T1 = 1000

\frac{1200}{1000} =\frac{Q2}{308} \\\\Q2 = 369.6 KJ

<h3>Cournot efficiency = W/Q1</h3>

= 1200 - 369.6/1200

= 69.2 percent

change in s is zero for the reversible heat engine.

Read more on enthropy here: brainly.com/question/6364271

6 0
2 years ago
Airflow through a long, 0.15-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizon
Ulleksa [173]

The complete Question is:

Airflow through a long, 0.15-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizontal duct is uninsulated and exposed to air at 35°C in the crawlspace beneath a home, what is the heat gain per unit length of the duct? Evaluate the properties of air at 300 K. For the sides of the duct, use the more accurate Churchill and Chu correlations for laminar flow on vertical plates.

What is the Rayleigh number for free convection on the outer sides of the duct?

What is the free convection heat transfer coefficient on the outer sides of the duct, in W/m2·K?

What is the Rayleigh number for free convection on the top of the duct?  

What is the free convection heat transfer coefficient on the top of the duct, in W/m2·K?

What is the free convection heat transfer coefficient on the bottom of the duct, in W/m2·K?

What is the total heat gain to the duct per unit length, in W/m?

Answers:

- 7709251  or 7.709 ×10⁶

- 4.87

- 965073

- 5.931 W/m² K

- 2.868 W/m² K

- 69.498 W/m

Explanation:

Find the given attachments for complete explanation

4 0
3 years ago
In an ideal gas, specific enthalpy is a function of i. Entropy ii. Temperature iii, Pressure iv. Mass
Mice21 [21]

Answer:

Temperature

Explanation:

In an ideal gas the specific enthalpy  is exclusively a function of Temperature only this can be also written as h = h(T)  

A gas is said be ideal gas if obeys PV= nRT law

And in a ideal gas both internal energy and specific enthalpy are a function of Temperature only. Therefore the constant volume and constant pressure specific heats Cv and Cp are also function of temperature only.

5 0
3 years ago
In a planetary geartrain with a form factor of 8, the sun gear rotates clockwise at 5 rad⁄s and the ring gear rotates clockwise
lina2011 [118]

Answer:

D. N= 11. 22 rad/s (CW)

Explanation:

Given that

Form factor R = 8

Speed of sun gear = 5 rad/s (CW)

Speed of ring gear = 12 rad/s (CW)

Lets take speed of carrier gear is N

From Algebraic method ,the relationship between speed and form factor given as follows

\dfrac{N_{sun}-N}{N_{ring}-N}=-R

here negative sign means that ring and sun gear rotates in opposite direction

Lets take CW as positive and ACW as negative.

Now by putting the values

\dfrac{N_{sun}-N}{N_{ring}-N}=-R

\dfrac{5-N}{12-N}=-8

N= 11. 22 rad/s (CW)

So the speed of carrier gear is 11.22 rad/s clockwise.

8 0
3 years ago
Other questions:
  • The best approach to keeping your car in safe working order is to
    5·2 answers
  • Describe the steps, tools, and technology needed in detail and
    12·1 answer
  • What is the maximum thermal efficiency possible for a power cycle operating between 600P'c and 110°C? a). 47% b). 56% c). 63% d)
    15·1 answer
  • In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
    11·1 answer
  • How does emotion affect a persons driving
    15·1 answer
  • A vertical pole consisting of a circular tube of outer diameter 127 mm and inner diameter 115 mm is loaded by a linearly varying
    10·1 answer
  • The goal of the Concept Selection phase is to (please choose the best answer): Group of answer choices
    10·1 answer
  • How to comment other people
    9·2 answers
  • Somebody help me!! It’s due today
    9·1 answer
  • Help please!!!!!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!