Answer:
As a heating engineer and considering a house as a dynamic system , and that without a heater, the average temperature in the house would vary over a 24-h period.
What might you consider for inputs, outputs, and state variables for a simple dynamic model?
State variables: according to the weather conditions of the area where the house was built:
State variable # 1: minimum temperture during a day in an specific season (*4);
State variable # 2: maximum temperature during the day, in an specific season (*4) as well;
State variable # 3: average temperature during the day in an specific season (*4).
That makes 16 state variables all of them in Centigrade degrees.
Input variables:
# 1: one degree over each of the state variables given.
# 2: one degree below each of the state variables, all of them in Centigrade degrees.
Output variables:
# 1 are the temperatures reached after adding one degree to each of the input variables.
# 2 are the temperatures reached after decreasing one degree, all of them in Centigrade degrees.
How would you expand your model so that it would predict temperatures in several rooms of the house?
I would add output variables in a "Y" system to predict temperatures in several rooms of the house.
How does the installation of a thermostatically controlled heater change your model?
It would change on the "Y" variables as they will get a control system designed for sensors to produce from some input variables to make the system respond.
Explanation:
State-determined system models using well defined physical systems is of highly interest to engineers.