Answer:
Helps to remove Oxides formed during brazing.
Explanation:
Flux is needed to dissolve and remove oxides that may form during brazing. Prevent or inhibit the formation of oxide during the brazing process
Answer:
depends on the size
Explanation:
Length x width x depth x 7.5 = volume (in gallons)
Length times width gives the surface area of the pool. Multiplying that by the depth gives the volume in cubic feet. Since there are 7.5 gallons in each cubic foot, multiply the cubic feet of the pool by 7.5 to arrive at the volume of the pool, expressed in gallons.
Answer:
I think D is correct
Explanation:
C is decreasing function, probably worst
A is arctan -> in radian, the rate of increasing is very slow-> second worst
B(14) = ln(9*14) = 4.8
D(14) = sqrt(8+14^2)=14.2
An assembly line is a manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. In most cases, a manufacturing assembly line is a semi-automated system through which a product moves. At each station along the line some part of the production process takes place. The workers and machinery used to produce the item are stationary along the line and the product moves through the cycle, from start to finish.
Answer:
A.) 1mv = 2000N
B.) Impulse = 60Ns
C.) Acceleration = 66.67 m/s^2
Velocity = 4 m/s
Displacement = 0.075 metre
Absorbed energy = 60 J
Explanation:
A.) Using a mathematical linear equation,
Y = MX + C
Where M = (2000 - 0)/( 898 - 0 )
M = 2000/898
M = 2.23
Let Y = 2000 and X = 898
2000 = 2.23(898) + C
2000 = 2000 + C
C = 0
We can therefore conclude that
1 mV = 2000N
B.) Impulse is the product of force and time.
Also, impulse = momentum
Given that
Mass M = 30kg
Velocity V = 2 m/s
Impulse = M × V = momentum
Impulse = 30 × 2 = 60 Ns
C.) Force = mass × acceleration
F = ma
Substitute force and mass into the formula
2000 = 30a
Make a the subject of formula
a = 2000/30
acceleration a = 66.67 m/s^2
Since impulse = 60 Ns
From Newton 2nd law,
Force = rate of change in momentum
Where
change in momentum = -MV - (- MU)
Impulse = -MV + MU
Where U = initial velocity
60 = -60 + MU
30U = 120
U = 120/30
U = 4 m/s
Force = 2000N
Impulse = Ft
Substitute force and impulse to get time
60 = 2000t
t = 60/2000
t = 0.03 second
Using third equation of motion
V^2 = U^2 + 2as
Where S = displacement
4^2 = 2^2 + 2 × 66.67S
16 = 4 + 133.4S
133.4S = 10
S = 10/133.4
S = 0.075 metre
D.) Energy = 1/2 mV^2
Energy = 0.5 × 30 × 2^2
Energy = 15 × 4 = 60J