1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
8

Nitrogen (N2) enters an insulated compressor operating at steady state at 1 bar, 378C with a mass flow rate of 1000 kg/h and exi

ts at 10 bar. Kinetic and potential energy effects are negligible. The nitrogen can be modeled as an ideal gas with k 5 1.391. (a) Determine the minimum theoretical power input required, in kW, and the corresponding exit temperature, in 8C. (b) If the exit temperature is 3978C, determine the power input, in kW, and the isentropic compressor efficiency.
Engineering
1 answer:
STatiana [176]3 years ago
5 0

Answer:

A)

i) 592.2 k

ii) - 80 kw

B)

i) 105.86 kw

ii) 78%

Explanation:

Note : Nitrogen is modelled as an ideal gas hence R - value = 0.287

<u>A) Determine the minimum theoretical power input required  and exit temp </u>

<em>i) Exit temperature :</em>

\frac{T_{2s} }{T_{1} } = (\frac{P2}{P1} )^{\frac{k-1}{k} }

∴ T_{2s}  = ( 37 + 273 ) * (\frac{10}{1} )^{\frac{1.391-1}{1.391} }  =  592.2 k

i<em>i) Theoretical power input :</em>

W = \frac{-n}{n-1} mR(T_{2} - T_{1} )

where : n = 1.391 , m = 1000/3600 , T2= 592.2 , T1 = 310 , R = 0.287

W = - 80 kW  ( i.e. power supplied to the system )

<u>B) Determine power input and Isentropic compressor efficiency </u>

Given Temperature = 3978C

<em>i) power input to compressor</em>

W = m* \frac{1}{M} ( h2 - h1 )

h2 = 19685 kJ/ kmol ( value gotten from Nitrogen table at temp = 670k )

h1 = 9014 kj/kmol ( value gotten from Nitrogen table at temp = 310 k )

m = 1000/3600 ,  M = 28

input values into equation above

W = 105.86 kw

<em>ii) compressor efficiency </em>

П = ideal work output / actual work output

   = ( h2s - h1 ) / ( h2 - h1 ) = ( T2s - T1 ) / ( T2 - T1 )

  = ( 592.2 - 310 ) / ( 670 - 310 )

  = 0.784 ≈ 78%

<em />

<em />

<em />

You might be interested in
Air at 27°C and a velocity of 5 m/s passes over the small region As (20 mm × 20 mm) on a large surface, which is maintained at T
JulsSmile [24]

Answer:

a) The maximum possible heat removal rate = 2.20w

b) Fin length = 37.4 mm

c) Fin effectiveness = 89.6

d) Percentage increase = 435%

Explanation:

See the attached file for the explanation.

5 0
3 years ago
Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. D
Shkiper50 [21]

Solution :

$P_1 = 120 \ psia$

$P_2 = 20 \ psia$

Using the data table for refrigerant-134a at P = 120 psia

$h_1=h_f=40.8365 \ Btu/lbm$

$u_1=u_f=40.5485 \ Btu/lbm$

$T_{sat}=87.745^\circ  F$

∴ $h_2=h_1=40.8365 \ Btu/lbm$

For pressure, P = 20 psia

$h_{2f} = 11.445 \ Btu/lbm$

$h_{2g} = 102.73 \ Btu/lbm$

$u_{2f} = 11.401 \ Btu/lbm$

$u_{2g} = 94.3 \ Btu/lbm$

$T_2=T_{sat}=-2.43^\circ  F$

Change in temperature, $\Delta T = T_2-T_1$

                                         $\Delta T = -2.43-87.745$

                                           $\Delta T=-90.175^\circ  F$

Now we find the quality,

$h_2=h_f+x_2(h_g-h_f)$

$40.8365=11.445+x_2(91.282)$

$x_2=0.32198$

The final energy,

$u_2=u_f+x_2.u_{fg}$

   $=11.401+0.32198(82.898)$

   $=38.09297 \ Btu/lbm$

Change in internal energy  

$\Delta u= u_2-u_1$

   = 38.09297-40.5485

  = -2.4556        

5 0
3 years ago
The denominator of a fraction is 4 more than the numenator. If 4 is added to the numenator and 7 is added to the denominator, th
kati45 [8]

Answer:

\frac{3}{7}

Explanation:

Lets take the numerator of the fraction to be = x

So the denominator of the fraction is 4 more than the numerator = x+4

The fraction is ;\frac{x}{4+x}

Now add 4 to the numerator and add 7 to the denominator as;

\frac{x+4}{4+x+7} =\frac{x+4}{x+11}

This new fraction is equal to 1 half =1/2

write the equation as;

\frac{x+4}{x+11} =\frac{1}{2}

perform cross-product

2(x+4 )=1( x+11 )

2x+8 = x + 11

2x-x = 11-8

x=3

The original fraction is;  

\frac{x}{4+x} =\frac{3}{3+4} =\frac{3}{7}

3 0
3 years ago
g Consider a thin opaque, horizontal plate with an electrical heater on its backside. The front end is exposed to ambient air th
xxTIMURxx [149]

Answer:

The electrical power is 96.5 W/m^2

Explanation:

The energy balance is:

Ein-Eout=0

qe+\alpha sGs+\alpha skyGsky-EEb(Ts)-qc=0

if:

Gsky=oTsky^4

Eb=oTs^4

qc=h(Ts-Tα)

\alpha s=\frac{\int\limits^\alpha _0 {\alpha l Gl} \, dl }{\int\limits^\alpha _0 {Gl} \, dl }

\alpha s=\frac{\int\limits^\alpha _0 {\alpha lEl(l,5800 } \, dl }{\int\limits^\alpha _0 {El(l,5800)} \, dl }

if Gl≈El(l,5800)

\alpha s=(1-0.2)F(0-2)+(1-0.7)(1-F(0-2))

lt= 2*5800=11600 um-K, at this value, F=0.941

\alpha s=(0.8*0.941)+0.3(1-0.941)=0.77

The hemispherical emissivity is equal to:

E=(1-0.2)F(0-2)+(1-0.7)(1-F(0-2))

lt=2*333=666 K, at this value, F=0

E=0+(1-0.7)(1)=0.3

The hemispherical absorptivity is equal to:

qe=EoTs^{4}+h(Ts-T\alpha  )-\alpha sGs-\alpha oTsky^{4}=(0.3*5.67x10^{-8}*333^{4})+10(60-20)-(0.77-600)-(0.3*5.67x10^{-8}*233^{4})=96.5 W/m^{2}

3 0
3 years ago
PLEASE HELP ME!!!!!! 100 POINTS FOR HELPFUL ANSWERS + BRAINLIEST!!!!!
const2013 [10]

Answer:

well you could get some green goblin it disolves all the c rap in sink

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5×10-4
    13·1 answer
  • Who can work on a fixed ladder that extends more than 24 feet?
    11·1 answer
  • All sized companies are required to have a written fire prevention plan true or false
    14·2 answers
  • A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m K experiences uniform volumetric heat generation at a ra
    15·1 answer
  • Suggest how the following requirements might be rewritten in a
    8·1 answer
  • Which of the following is an example of a computer simulation?
    7·1 answer
  • A small distiller evaporates 10 L of water per half hour. Alloy tubing exposed to the air serves a condenser to recover steam. T
    14·1 answer
  • Test if a number grade is an A (greater than or equal to 90). If so, print "Great!". Hint: Grades may be decimals. Sample Run En
    15·1 answer
  • Difference between theory and practice?​
    10·1 answer
  • A 1020 Cold-Drawn steel shaft is to transmit 20 hp while rotating at 1750 rpm. Calculate the transmitted torque in lbs. in. Igno
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!