Answer:
as soon as there is a design to improve
Explanation:
As a design engineer, I started on the "design improvement" step as soon as I had an initial conceptual design.
__
Then, I started that step again when my boss told me, "make it better."
_____
The more interesting question is, "when do you <em>stop</em> the design improvement step?" (Judging by the constant barrage of software updates, that answer is, "never.")
Explanation:
Yes Diesel engine have problem of knocking.
We know that knocking is phenomenon in which suddenly large amount of power generates this large amount of power will cause the failure of diesel engine.
Actually when one set of fuel inject inside the cylinder to burn with already compressed air (in general up to 10-15 bar) then this fuel does not burn complete and accumulate inside the cylinder.After that second set of fuel inject inside the cylinder then that one set of fuel burns with second set of fuel and produces large amount of sudden power for engine and causes the breaks in the crank or connecting rod of engine.it leads to damage the engine.
When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.
<h3>What is the road about?</h3>
Note that a Yellow centerlines can be seen in roads and it is one that is often used to separate traffic moving in different directions.
Note also that Broken lines can be crossed to allow slower-moving traffic and as such, When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.
See full question below
You are turning onto a two-lane road divided by a broken yellow line. You know immediately that:
Answers
You are on a two-way road.
You are on a one-way road.
The road is under repair.
You must stay to the left of the broken yellow lines.
Learn more about two-way road from
brainly.com/question/13123201
#SPJ2
Answer:
%Reduction in area = 73.41%
%Reduction in elongation = 42.20%
Explanation:
Given
Original diameter = 12.8 mm
Gauge length = 50.80mm
Diameter at the point of fracture = 6.60 mm (0.260 in.)
Fractured gauge length = 72.14 mm.
%Reduction in Area is given as:
((do/2)² - (d1/2)²)/(do/2)²
Calculating percent reduction in area
do = 12.8mm, d1 = 6.6mm
So,
%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²
%RA = 0.734130859375
%RA = 73.41%
Calculating percent reduction in elongation
%Reduction in elongation is given as:
((do) - (d1))/(d1)
do = 72.14mm, d1 = 50.80mm
So,
%RA = ((72.24) - (50.80))/(50.80)
%RA = 0.422047244094488
%RA = 42.20%