The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
If you draw the problem, it would look like that shown in the attached picture. The total length the ship will now travel can be solved using the Pythagorean theorem. The solution is as follows:
d = √(120)²+(100)²
d = 156.2 km
So, the ship will have to travel 156.2 km to the northwest direction.
Answer:
s = 6.25 10⁻²² m
Explanation:
Polarizability is the separation of electric charges in a structure, in the case of the atom it is the result of the separation of positive charges in the nucleus and the electrons in their orbits, macroscopically it is approximated by
p = q s
s = p / q
let's calculate
s = 1 10⁻⁴⁰ / 1.6 10⁻¹⁹
s = 0.625 10⁻²¹ m
s = 6.25 10⁻²² m
We see that the result is much smaller than the size of the atom, therefore this simplistic model cannot be taken to an atomic scale.
It's being planned to launch in the 2020's
Answer:
They use LED lights.
Explanation:
Hope this helps
-A Helping Friend (mark brainliest pls)