1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
4 years ago
7

A 10.-newton force is required to hold a stretched spring 0.20 meter from its rest position. What is the potential energy stored

in the stretched spring?
Physics
1 answer:
Alex4 years ago
3 0
F_{r} = 10 N
x = 0.2 m

F_{r} = -Kx

-K = \frac{10 N}{0.2 m}

K = -50\frac{N}{m}

You might be interested in
The speed limit sign in indiana reads 60 miles per hour. convert these units to meters per second
cluponka [151]

Answer:

26.822 m/s

Explanation:

60 mi/hr  *  5280 ft/mile *  1 hr / 3600 sec  *  12 in / foot * 1 meter / 39.37 in = <u>26.822 m/s</u>

3 0
2 years ago
Two particles oscillate in simple harmonic motion along a common straight-line segment of length 1.0 m. Each particle has a peri
igor_vitrenko [27]

Answer:

a) the particles are <em>0.217 m </em>apart

b) <em>the particles are moving in the same direction</em>.

Explanation:

a) The amplitude of the oscillations is A/2 and the period of each particle is

T = 1.5 s however, they differ by a phase of π/6 rad. Let the phase of the first particle be zero so that the phase of the second particle is π/6. So we can write the coordinates of each of the particles as,

x₁ = A/2 cos(ωt)

x₂ = A/2 cos(ωt + π/6)

we can write the angular frequency ω, as

ω = 2π / T

so,

x₁ = A/2 cos(2π / T)

x₂ = A/2 cos(2π / T + π/6)

Thus, the coordinates of the particles at t = 0.45 s are,

x₁ = A/2 cos((2π × 0.45) / 1.5)) = -0.155 A

x₂ = A/2 cos((2π × 0.45) / 1.5) + π/6) = -0.372 A

Their separation at that time is, therefore,

Δx = x₁ - x₂

    = -0.155 A + 0.372 A

    = 0.217 A

since A = 1 m

Thus,

<em>Δx  = 0.217 m</em>

<em></em>

<em></em>

b) In order to find their directions, we must take the derivatives at t = 0.45 s.

Therefore,

v₁ = dx₁ / dt

   = (-πA / T) sin(2πt / T)

   = -(π(1) / 1.5) sin(2π(0.45) / 1.5)

   = -1.99

and,

v₂ = dx₂ / dt

   = (-πA / T) sin((2πt / T) + π/6)

   = -(π(1) / 1.5) sin((2π(0.45) / 1.5) + π/6)

   = -1.40

Since both v₁ and v₂ are negative, this shows that <em>the particles are moving in the same direction</em>.

6 0
3 years ago
Please help me with questions 1, 2 and 3. <br> i need a step by step explanation
kifflom [539]

Answer:

1) d

2) 5 m/s

3) 100

Explanation:

The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:

(i) x=\frac{1}{2}at^2+v_0t+x_0

The equation for velocity v and a constant acceleration a is:

(ii) v=at+v_0

1) Solve equation (ii) for acceleration a and plug the result in equation (i)

(iii) a = \frac{v -v_0}{t}

(iv) x = \frac{v-v_0}{2t}t^2+v_0t + x_0

Simplify equation (iv) and use the given values v = 0, x₀ = 0:

(v) x=-\frac{v_0}{2}t + v_0t= \frac{v_0}{2}t

2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:v=at+v_0=0.2\frac{m}{s^2} * 10s+3\frac{m}{s}=2\frac{m}{s}+3\frac{m}{s}=5\frac{m}{s}

3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

f=\frac{x(t_1)}{x(t_2)}=\frac{\frac{1}{2}at_1^2 }{\frac{1}{2}at_2^2}=\frac{t_1^2}{t_2^2}=\frac{10^2}{1^2}=\frac{100}{1}

5 0
4 years ago
Why are SI units used for scientific works ?​
sineoko [7]
Energy can be one answer! There are many, but energy is a main one.
5 0
4 years ago
Read 2 more answers
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
4 years ago
Other questions:
  • Count Rumford concluded that heat energy is produced by
    11·1 answer
  • Which region is located between 23.5° north and 23.5° south of the equator?
    15·1 answer
  • You are looking at your textbook. you can see the textbook because of light doing what process when it hits the textbook's surfa
    6·1 answer
  • Which part of an atom carries a negative charge?
    10·1 answer
  • Color depends on what characteristic of light?
    15·1 answer
  • The total length of the cord is L = 7.00 m, the mass of the cord is m = 7.00 g, the mass of the hanging object is M = 2.50 kg, a
    6·1 answer
  • A plane flew at a speed of 600 km/hr for a distance of 1500 km,
    6·1 answer
  • Which requires more energy: lifting a 50 kg sack vertically 2 meters or lifting a 25 kg sack vertically 4 meters?
    13·2 answers
  • If a rock is thrown vertically upward from the surface of Mars with velocity of 20 m/s, its height (in meters) after t seconds i
    15·1 answer
  • Please Help me to find the answer...​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!