1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
13

Two particles oscillate in simple harmonic motion along a common straight-line segment of length 1.0 m. Each particle has a peri

od of 1.5 s, but they differ in phase by π/6 rad.
(a) How far apart are they 0.45 s after the lagging particle leaves one end of the path?
(b) Are they then moving in the same direction, toward each other, or away from each other?
Physics
1 answer:
igor_vitrenko [27]3 years ago
6 0

Answer:

a) the particles are <em>0.217 m </em>apart

b) <em>the particles are moving in the same direction</em>.

Explanation:

a) The amplitude of the oscillations is A/2 and the period of each particle is

T = 1.5 s however, they differ by a phase of π/6 rad. Let the phase of the first particle be zero so that the phase of the second particle is π/6. So we can write the coordinates of each of the particles as,

x₁ = A/2 cos(ωt)

x₂ = A/2 cos(ωt + π/6)

we can write the angular frequency ω, as

ω = 2π / T

so,

x₁ = A/2 cos(2π / T)

x₂ = A/2 cos(2π / T + π/6)

Thus, the coordinates of the particles at t = 0.45 s are,

x₁ = A/2 cos((2π × 0.45) / 1.5)) = -0.155 A

x₂ = A/2 cos((2π × 0.45) / 1.5) + π/6) = -0.372 A

Their separation at that time is, therefore,

Δx = x₁ - x₂

    = -0.155 A + 0.372 A

    = 0.217 A

since A = 1 m

Thus,

<em>Δx  = 0.217 m</em>

<em></em>

<em></em>

b) In order to find their directions, we must take the derivatives at t = 0.45 s.

Therefore,

v₁ = dx₁ / dt

   = (-πA / T) sin(2πt / T)

   = -(π(1) / 1.5) sin(2π(0.45) / 1.5)

   = -1.99

and,

v₂ = dx₂ / dt

   = (-πA / T) sin((2πt / T) + π/6)

   = -(π(1) / 1.5) sin((2π(0.45) / 1.5) + π/6)

   = -1.40

Since both v₁ and v₂ are negative, this shows that <em>the particles are moving in the same direction</em>.

You might be interested in
A man is standing on the shore of a beach, up to his knees in water. Every second two waves hit him. What is the frequency of th
laila [671]

Answer:

f = 2 Hz

Explanation:

The frequency of a wave is defined as the no. of waves passing per unit of time. Therefore, the frequency of a wave can be calculated by the following formula:

f = \frac{n}{t}

where,

f = frequency of the wave = ?

t = time passed = 1 s

n = no. of waves passing in time t = 2

Therefore,

f = \frac{2}{1\ s}

<u>f = 2 Hz</u>

3 0
3 years ago
If you place a magnet under a clear dish, and sprinkle iron fillings over it, above what part of the magnet will most of the fil
xxTIMURxx [149]

round the corners of the magnet that where it is stronger

hope this helps :)

5 0
3 years ago
Read 2 more answers
As a quality test of ball bearings, you drop bearings (small metal balls), with zero initial velocity, from a height of 1.94 m i
11Alexandr11 [23.1K]

Answer:

The average acceleration of the bearings is 0.77\times10^{3}\ m/s^2

Explanation:

Given that,

Height = 1.94  m

Bounced height = 1.48 m

Time interval t=14.86\times10^{-3}\ s

Velocity of the ball bearing just before hitting the steel plate

We need to calculate the velocity

Using conservation of energy

mgh=\dfrac{1}{2}mv^2

Put the value into the formula

9.8\times1.94=\dfrac{1}{2}\times v^2

v=\sqrt{2\times9.8\times1.94}

v=6.166\ m/s

Negative as it is directed downwards

After bounce back,

We need to calculate the velocity

Using conservation of energy

mgh=\dfrac{1}{2}mv^2'

Put the value into the formula

9.8\times1.48=\dfrac{1}{2}\times v^2'

v'=\sqrt{2\times9.8\times1.48}

v'=5.38\ m/s

We need to calculate the average acceleration of the bearings while they are in contact with the plate

Using formula of acceleration

a=\dfrac{v-v'}{t}

Put the value into the formula

a=\dfrac{5.38-(-6.166)}{14.86\times10^{-3}}

a=776.98\ m/s^2

a=0.77\times10^{3}\ m/s^2

Hence,The average acceleration of the bearings is 0.77\times10^{3}\ m/s^2

6 0
3 years ago
A horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentia
Sloan [31]

Answer:

576 joules

Explanation:

From the question we are given the following:

weight = 810 N

radius (r) = 1.6 m

horizontal force (F) = 55 N

time (t) = 4 s

acceleration due to gravity (g) = 9.8 m/s^{2}

K.E = 0.5 x MI x ω^{2}

where MI is the moment of inertia and ω is the angular velocity

MI = 0.5 x m x r^2

mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg

MI = 0.5 x 82.65 x 1.6^{2}

MI = 105.8 kg.m^{2}

angular velocity (ω) = a x t

angular acceleration (a) = torque ÷ MI

where torque = F x r = 55 x 1.6 = 88 N.m

a= 88 ÷ 105.8 = 0.83 rad /s^{2}

therefore

angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s

K.E = 0.5 x MI x ω^{2}

K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules

6 0
3 years ago
A gray kangaroo can bound across level ground with each jump carrying it 9.1 m from the takeoff point. Typically the kangaroo le
Alona [7]

Answer:

u = 10.63 m/s

h = 1.10 m

Explanation:

For Take-off speed ..

by using the standard range equation we have

R = u² sin2θ/g

R = 9.1 m

θ = 26º,

Initial velocity = u

solving for u

u² = \frac{Rg}{sin2\theta}

u^2 = \frac{9.1 x 9.80}{sin26}

u^2 = 113.17

u = 10.63 m/s

for Max height

using the standard h(max) equation ..

v^2 = (v_osin\theta)^2 -2gh

h =\frac{(v_o^2sin\theta)^2}{2g}

h  =  \frac{(113.17)(sin26)^2}{(2 x 9.80)}}

h = 1.10 m

7 0
3 years ago
Other questions:
  • What two forms might terraces take when they become part of a continent
    15·1 answer
  • 1. ________ is a force that attracts all matter to each other
    6·1 answer
  • The phosphorus cycle is important to ecosystems. Choose all of these statements that are true concerning the phosphorus cycle.
    7·2 answers
  • Which has a neutral charge?
    10·2 answers
  • Two 2.0-cm-diameter insulating spheres have a 6.60 cm space between them. One sphere is charged to + 76.0 nC , the other to - 30
    10·1 answer
  •  Why are radio waves safer to humans than X- Rays
    8·1 answer
  • The achilles tendon is subjected to a large tension stress that results in a strain of 6%. if the unloaded tendon is 10 cm long,
    5·1 answer
  • When an object absorbs light energy, it reflects
    5·1 answer
  • A 30.0 kg rock falls from a 35.0 m cliff. What is the kinetic and potential energy when the rock has fallen 12.0 m?
    5·1 answer
  • A particle is constrained to move round a circle radius 382400km and makes a single revolution in 27.3 days. (i). Find the veloc
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!