Answer:2.541
Explanation:
Well , Potential Energy = mgh
m=mass = 82
g=acceleration of gravity=9.80m/s^2
h=what we are looking for
PE=mgh
PE/(mg) = h
Substitute in the values:
1970/(82 x 9.8) = h 2.541
The mass of the second car is 1434.21 kg
<u>Explanation:</u>
Using law of conservation of momentum,

Given:
= 1090 kg
= 11 m/s
= 0
v = 4.75 m/s
We need to find 
When substituting the given values in the above equation, we get





(a) 10 GHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
(a). 1 MHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
a. Frequency is the measure of number of times a same thing will be repeated in a given time interval for a given time. And wavelength is the measure of distance between two successive crests or troughs. So wavelength and frequency are inversely proportional to each other. And velocity of light is the proportionality constant.
So frequency of microwave radiation = Speed of light/Wavelength of radiation
Frequency = 
Frequency = 
So 10 GHz is the frequency of microwave radiation.
b). As microwave is a part of light waves, so it will be experiencing the speed of light.
As the speed is 3*
m/s and the distance between the two mountains is given as 50 km, then time can be calculated as
Time = Distance/Velocity
Time = 
So time = 0.167 ms.
Thus, 0.167 ms is required by the microwave to travel between two mountains.
According to Newton's second law
E.e = a * mp ..... (1)
where
E is the magnitude of the electric field; e = 1.6 * 10^-19 is the elementary charge; mp = 1.67*10^-27 kg is the proton mass; a is the acceleration.
So, the distance
l = at^2/2 .......(2)
The proton accelerated
a = 2l / t^2 ...........(3)
From equations (1) and (3)
E= 32.51 V/m
Electric field
The physical field that surrounds electrically charged particles and exerts a force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field). It can also refer to a system of charged particles' physical field. Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
To learn more about an electric field refer here:
brainly.com/question/15800304
#SPJ4
Answer:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
The ball rotates 6.78 revolutions.
Explanation:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
At the bottom the ball has the following angular speed:

Now, we need to find the distance traveled by the ball (L) by using θ=28° and h(height) = 2 m:
To find the revolutions we need the time, which can be found using the following equation:
(1)
So first, we need to find the acceleration:
(2)
By entering equation (2) into (1) we have:

Since it starts from rest (v₀ = 0):

Finally, we can find the revolutions:

Therefore, the ball rotates 6.78 revolutions.
I hope it helps you!