At surface,
v = kq/r
And potential energy of an electron is given by,
PE = -ev = -ekq/r
At escape velocity,
PE + KE = 0.
Therefore,
1/2mv^2 - ekq/r =0
1/2mv^2 = ekq/r
v = Sqrt [2ekq/mr], where v = escape velocity, e = 1.6*10^-19 C, k = 8.99*10^9 Nm^2/C^2, m = 9.11*10^-31 kg, r = 1.1*10^-2 m, q = 8*10^-9 C
Substituting;
v = Sqrt [(2*1.6*19^-19*8.99*10^9*8*10^-9)/(9.11*10^-31*1.1*10^-2)] = 47949357.23 m/s ≈ 4.795 *10^7 m/s
Answer:
W = 0 :The work done on the wall is zero,because the wall is not moving
Explanation:
Work theory
Work is the product of a force applied to a body and the displacement of the body in the direction of this force.
W= F*d Formula (1)
W: Work (Joules) (J)
F: force applied (N)
d=displacement of the body (m)
The work is positive (W+) if the force goes in the same direction of movement.
The work is negative (W-)if the force goes in the opposite direction to the movement
Data
F= 400-N
d= 0
Problem development
We apply formula (1) to calculate the work done on the wall:
W= 400*0
W=0
Answer:
258774.9441 m
Explanation:
x = Distance of probe from Earth
y = Distance of probe from Sun
Distance between Earth and Sun = 
G = Gravitational constant
= Mass of Sun = 
= Mass of Earth = 
According to the question


The probe should be 258774.9441 m from Earth
It expands and pushes the crack further aprt
Answer:
the object is changing direction
Explanation:
During straight line motion, On a velocity vs. time graph, any time the line crosses the x axis, the object is changing direction