Answer:
Total displacement will be 47 meter
Total distance will be 83 meters
Explanation:
We have given that first the student go eastward towards bus stop 20 meters
But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters
So displacement = 20-18 = 2 meters
And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters
Total distance traveled by the student = 20+18+45 = 83 meters
Answer:
a) false b) true c) true d) false and e) true
Explanation:
a) false. All the energy applied is used for the phase change, so the temperature remains constant.
b) true. The kinetic energy is associated with the speed of the particles and they have more mobility in the liquid, therefore, more kinetic energy.
c) true. Since energy is used for state change
d) false. In general, mobility and temperature are proportional
e) true. Heat is the source of energy for the change of state
Explanation: Velocity is the displacement of an object during a specific unit of time. Two measurements are needed to determine velocity. Displacement and time. Displacement includes a direction, so velocity also includes a direction. Speed with direction. Velocity can be an average velocity or an instantaneous velocity. Units for velocity are the same as for speed: m/s, km/h, and mph. Delta x(Δx) is the symbol used for displacement. Delta (Δ) means to "change in." Δx means to "change in position." Δx is calculated by final position minus initial position. Velocity formula: → v=Δx/t as a fraction.
v=Δx/t
<em><u>Final answer is 30.</u></em>
Hope this helps!
Thanks!
Have a great day!
-Charlie
Every person is different. But for a planet-wide overall average that roughly represents all human beings on Earth, the figures usually used are:
from 20 Hz to 20,000 Hz .
To solve this problem we use an amplification formula for divergent lenses
Where:
i: distance of the image to the lens
o: Distance from the object to the lens
h = height of the object
h '= height of the image
h '= 6 mm
The height is 6 mm