Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
Answer:
157.64 L
Explanation:
We'll begin by converting 30 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 30 °C
T(K) = 30 °C + 273
T (K) = 303 K
Next, we shall convert 600 mmHg to atm. This can be obtained as follow:
760 mmHg = 1 atm
Therefore,
600 mmHg = 600 mmHg × 1 atm / 760 mmHg
600 mmHg = 0.789 atm
Finally, we shall determine the volume of the gas. This can be obtained as follow:
Number of mole (n) = 5 moles
Temperature (T) = 303 K
Pressure (P) = 0.789 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
0.789 × V = 5 × 0.0821 × 303
0.789 × V = 124.3815
Divide both side by 0.789
V = 124.3815 / 0.789
V = 157.64 L
Therefore, the volume of the gas is 157.64 L
Moles of CO2 = number of molecules / 6.02x10^23. = 3x10^23/6.02x10^23 = 0.5moles. Therefore, mass of CO2 = moles x molecular mass of CO2= 0.5x44 = 22gm.
<span>In order to covert a unit, you must know certain number of conversions. In here, the conversion is in unit of length. One meter is equal to 1000 meter. So if it is in cubic form, then the answer of one meter cube is also equal to 1000 cube. Then,
32 m</span>³ (1000 mm/1m)³
<span>or
</span>32 m³ (1000³ mm³/1 m³)
= 3.2 x 10¹⁰ mm³