Rutile (TiO2) or ilmenite (FeTiO3) titanium-containing minerals has the larger percentage of titanium is explained below.
Explanation:
1. Titanium is obtained from different ores that occur naturally on the Earth. Ilmenite (FeTiO3) and rutile (TiO2) are the most important sources of titanium.
2. According to USGS, Ilmenite(FeTio3) accounts for about 92% of the world’s consumption of titanium minerals.
3. World resources of anatase, ilmenite and rutile total more than 2 billion tonnes. Identified reserves total 750 million tonnes (ilmenite plus rutile).
4. China, with 20 million tonnes--accounting for 29% of the world total-- is now the country that is most abundant in terms of ilmenite reserves. Meanwhile, Australia, with 24 million tones rutile reserves—accounting for 50% of the world total—is now the country that is most abundant in terms of rutile reserves.
5.Ilmenite can be mined from both layered intrusive deposits and heavy mineral deposits. It is often found alongside rutile in heavy mineral deposits. Ilmenite is used to make titanium dioxide pigment or it can be processed into feedstock that can be used in the manufacture of titanium. This has become more common as viable rutile deposits become increasingly scarce. South Africa and Australia are among the world’s largest producer of Ilmenite, each extracting over a million metric tonnes per year.
6.The Mining of titanium from intrusive rock is restricted to ilmenite and its weathered derivative leucoxene. The largest opencast ilmenite mine is Tellnes in Norway’s municipality of Sokndal.
The compound HClO4, when placed in water, will dissociate into the ions, H+ and ClO4-. Therefore, the 2.0 M solution will also form 2.0 M H+. The pH is calculated through the equation,
pH = -log[H+]
Substituting,
pH = -log[2] = -0.3
Thus, the pH of the solution is -0.3.
Answer:
d
Explanation:
Carbohydrates are compounds containing carbon, hydrogen, and oxygen. Therefore, a is true.
An empirical formula is the simplest ratio of atoms present in a compound. Therefore, C2H4O2 and C3H6O3, (if you simplified them like you would a fraction) would be CH2O. Therefore b is correct,
They also have the same % composition, with a ratio of 1 carbon : 2 hydrogen : 1 oxygen. Therefore, c is correct.
Since a, b and c are all correct, the answer is d, all of the above are true.
Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Answer:
5,250g
Explanation:
Density = Mass / Volume
*Note: mass = x
1.50g/mL = x / 3500mL
multiply 3500mL on both sides
1.50g/mL * 3500mL = 3500mL(x) / 3500mL
cancel units
x = 5250g