Everything applies. In order to process technological design and scientific investigation everything can be used in either hypothesis or hypothetical design of technology or science.
Are you talking about stp? That would be 1 atm to 760 mm hg to 760 torr
Temperature would be 273K
Volume would be 22.4
Moles of any gas would be 1
Answer: The volume of the balloon at the center of the typhoon is 41.7L.
Note: The complete question is given below;
If a small weather balloon with a volume of 40.0 L at a pressure of 1.00 atmosphere was deployed at the edge of Typhoon Odessa, what was the volume of the balloon when it reached the center?
The severity of a tropical storm is related to the depressed atmospheric pressure at its center. In August 1985, Typhoon Odessa in the Pacific Ocean featured maximum winds of about 90 mi/hr and pressure that was 40.0 mbar lower at the center than normal atmospheric pressure. In contrast, the central pressure of Hurricane Andrew (pictured) was 90.0 mbar lower than its surroundings when it hit south Florida with winds as high as 165 mi/hr.
Explanation:
Since no temperature changes were given, it is assumed to be constant. Therefore, Boyle's law which describes the relationship between pressure and volume is used to determine the new volume at the center of Typhoon Odessa. Mathematically, Boyle's law states that; P1V1 = P2V2
Assuming 1atm = 1 bar, 1mbar = 0.001atm, 40mbar = 0.040atm
P1 = 1.0atm, V1 = 40.0L, P2 = 1atm - 0.040atm = 0.960atm, V2 = ?
Using P1V1 = P2V2
V2 = P1V1/P2
V2 = 1.0 * 40.0 / 0.96
V2 = 41.67L
Therefore, the volume of the balloon at the center of the typhoon is 41.7L.
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.