Answer:
(FeSCN⁺²) = 0.11 mM
Explanation:
Fe ( NO3)3 (aq) [0.200M] + KSCN (aq) [ 0.002M] ⇒ FeSCN+2
M (Fe(NO₃)₃ = 0.200 M
V (Fe(NO₃)₃ = 10.63 mL
n (Fe(NO₃)₃ = 0.200*10.63 = 2.126 mmol
M (KSCN) = 0.00200 M
V (KSCN) = 1.42 mL
n (KSCN) = 0.00200 * 1.42 = 0.00284 mmol
Total volume = V (Fe(NO₃)₃ + V (KSCN)
= 10.63 + 1.42
= 12.05 mL
Limiting reactant = KSCN
So,
FeSCN⁺² = 0.00284 mmol
M (FeSCN⁺²) = 0.00284/12.05
= 0.000236 M
Excess reactant = (Fe(NO₃)₃
n(Fe(NO₃)₃ = 2.126 mmol - 0.00284 mmol
=2.123 mmol
For standard 2:
n (FeSCN⁺²) = 0.000236 * 4.63
=0.00109
V(standard 2) = 4.63 + 5.17
= 9.8 mL
M (FeSCN⁺²) = 0.00109/9.8
= 0.000111 M = 0.11 mM
Therefore, (FeSCN⁺²) = 0.11 mM
Based on their percent concentration, the 5% sugar solution contains more water.
<h3>What is the concertation of a solution?</h3>
The concentration of a solution is the amount of solute dissolved or present in a given volume of solution.
Concentration of solutions can be expressed as either:
- molar concentration
- mass concentration
- percentage concentration
The concentration of the sugar solutions are given as percent concentration.
The 5% sugar solution contains 5% sugar and 95% water
The 10% sugar solution contains 10% sugar and 90% water.
Therefore, the 5% sugar solution contains more water.
Learn more about percent concentration at: brainly.com/question/1459676
#SPJ1
Answer:
The phenomenon of plasmolysis.
Explanation:
When cells of Elodea are placed in a salt solution the phenomenon of plasmolysis occurs and the water will start to move out from the cell. The concentration of salts in the cell will get high due to the diffusion of salt molecules inward. The organelles will look like as they are centered to the cell by hook.
Answer:
2.60 g of H₂ and 20.8 g of O₂ are produced in the decomposition of 23.44 g of water
Explanation:
Water decomposition is:
2H₂O → 2H₂ + O₂
We convert the mass of water, to moles:
23.44 g . 1 mol/18 g = 1.30 moles
Ratio is 2:2 with hydrogen and 2:1 with oxygen. Let's make rules of three:
2 moles of water can produce 2 moles of hydrogen gas and oxygen gas
Then, 1.30 moles will produce:
(1.30 . 2) /2 = 1.30 moles of H₂
(1.30 . 1) /2 = 0.65 moles of O₂
We convert the moles to mass
1.30 moles of H₂ . 2g / 1mol = 2.60 g of H₂
0.65 moles of O₂ . 32 g / 1 mol = 20.8 g of O₂
For this problem we can use 2 equations.
(1) - E = mC²
E = Energy of photon (J)
m = Mass of photon (kg) (1.67x10⁻²⁷ kg)
C = speed of light (3 x 10⁸ m/s)
(2) - E = hf
E = Energy of photon (J)
h = plank's constant (6.63 × 10⁻³⁴<span>J s)
f = frequency of the photon (Hz)
(1) = (2)
hence, </span>mC² = fh
by rearranging,
f = mC² / h
f = 1.67x10⁻²⁷ kg * (3 x 10⁸ m/s)² / (6.63 × 10⁻³⁴J s)
f = 2.27 x 10²³ Hz