<h3>
Answer:</h3>
28.52 seconds
<h3>
Explanation:</h3>
Initial number of atoms of Nitrogen 12,000 atoms
Half-life = 7.13
Number of atoms after decay = 750 atoms
We are required to determine the time taken for the decay.
Note that half life is the time taken for a radioactive isotope to decay to a half of its original amount.
Using the formula;
Remaining amount = Initial amount × (1/2)^n , where n is the number of half lives
In our case;
750 atoms = 12,000 atoms × (1/2)^n
0.0625 = 0.5^n
n = log 0.0625 ÷ log 0.5
n = 4
But, 1 half life =7.13 seconds
Therefore;
Time taken = 7.13 seconds × 4
= 28.52 seconds
Therefore, the time taken for 12,000 atoms of nitrogen to decay to 750 atoms is 28.52 seconds
Wind ,ice,and water eroded it over years
The high surface tension helps the paper clip - with much higher density - float on the water. The property of the surface of a liquid that allows it to resist an external force, due to the cohesive nature of its molecules.
Basically it means that there is a sort of skin on the surface of water where the water molecules hold on tight together. If the conditions are right, they can hold tight enough to support your paper clip. The paperclip is not truly floating, it is being held up by the surface tension.
Answer:
Mass of NaBr produced = 23.67 g
Explanation:
Given data:
Mass of AgBr = 42.7 g
Mass of NaBr produced = ?
Solution:
Chemical equation:
2Na₂S₂O₃ + AgBr → NaBr + Na₃(Ag(S₂O₃)₂
Number of moles of AgBr:
Number of moles = mass/molar mass
Number of moles = 42.7 g/ 187.7 g/mol
Number of moles = 0.23 mol
now we will compare the moles of AgBr with NaBr.
AgBr : NaBr
1 : 1
0.23 : 0.23
Mass of NaBr:
Mass = number of moles × molar mass
Mass = 0.23 mol × 102.89 g/mol
Mass = 23.67 g