With the given formula, we can calculate the amount of CO₂ using the balance equation but we first need the moles of CH₄
1) to find the moles of CH₄, we need to use the ideal gas formula (PV= nRT). if we solve for n, we solve for the moles of CH₄, and then we can convert to CO₂. Remember that the units put in this formula depending on the R value units. I remember 0.0821 which means pressure (P) has to be in atm, volume (V) in liters, the amount (n) in moles, and temperature (T) in kelvin.
PV= nRT
P= 1.00 atm
V= 32.0 Liters
n= ?
R= 0.0821 atm L/mol K
T= 25 C= 298 K
let plug the values into the formula.
(1.00 x 32.0 L)= n x 0.0821 x 298K
n= (1.00 x 32.0 L )/ (0.0821 x 298)= 1.31 moles CH₄
2) now let's convert the mole of CH₄ to moles to CO₂ using the balance equation
1.31 mol CH₄ (1 mol CO₂/ 1 mol CH₄)= 1.31 mol CO₂
3) Now let's convert from moles to grams using the molar mass of CO₂ (find the mass of each atom in the periodic table and add them)
molar mass CO₂= 12.00 + (2 x 16.0)= 44.0 g/mol
1.31 mol CO₂ ( 44.0 g/ 1 mol)= 57.6 g CO₂
Note: let me know if you any question.
Answer:
Oceanic crust, the outermost layer of Earth’s lithosphere that is found under the oceans and formed at spreading centres on oceanic ridges, which occur at divergent plate boundaries.
Explanation:
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)
Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/
Answer:
gnzl8303
gnzl8303vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Explanation: