Answer:
0.04 M
Explanation:
Given data:
Mass of Na₂SO₄= 14.2 g
Volume of solution = 2.50 L
Molarity of solution = ?
Solution:
Number of moles of Na₂SO₄:
Number of moles = mass/ molar mass
Number of moles = 14.2 g/ 142.04 g/mol
Number of moles = 0.1 mol
Molarity :
Molarity = number of moles of solute / volume of solution in L
Molarity = 0.1 mol / 2.50 L
Molarity = 0.04 M
Answer:
-3.7771 × 10² kJ/mol
Explanation:
Let's consider the following equation.
3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)
We can calculate the standard Gibbs free energy (ΔG°) using the following expression.
ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)
where,
n: moles
ΔG°f(): standard Gibbs free energy of formation
p: products
r: reactants
ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))
ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)
ΔG° = -377.71 kJ = -3.7771 × 10² kJ
This is the standard Gibbs free energy per mole of reaction.
<span>A. Mechanic agitations</span>
Answer:
Enzymes are homogenous, thermolabile,biological catalyst that increases the reaction rate of a chemical reaction.
Explanation:
Enzymes are used as catalyst in many biochemical reactions.Enzymes basically interact in a complementary fashion with the transition state of the reaction thus helping to decrease the energy barrier called activation energy.Thus enzymes helps to stimulate the velocity of biochemical reaction.
It is very important point to note that enzymes do not affect the reaction equilibrium.
Answer:
the answer is= NUCLEAR FISSION, NUCLEAR FUSSION, RADIOACTIVE DECAY.