When you double capacitance and inductance, the new resonance frequency becomes f/2.
The resonance frequency of RLC series circuit, is the frequency at which the capacity reactance is equal to inductive reactance.
It can also be defined as the natural frequency of an object where it tends to vibrate at a higher amplitude.
Xc = Xl
which gives the value for resonance frequency:

where;
f is the resonance frequency
L is the inductance
C is the capacitance
When you double capacitance and inductance, the new resonance frequency becomes;




Thus from above,
When you double capacitance and inductance, the new resonance frequency becomes f/2.
Learn more about resonance frequency here:
<u>brainly.com/question/13040523</u>
#SPJ4
Answer:
The net displacement of the car is 3 km West
Explanation:
Please see the attached drawing to understand the car's trajectory: First in the East direction for 4 km (indicated by the green arrow that starts at the origin (zero), and stops at position 4 on the right (East).
Then from that position, it moves back towards the West going over its initial path, it goes through the origin and continues for 3 more km completing a moving to the West a total of 7 km. This is indicated in the drawing with an orange trace that end in position 3 to the left (West) of zero.
So, its NET displacement considered from the point of departure (origin at zero) to the final point where the trip ended, is 3 km to the west.
Explanation:
It is given that,
Mass of the truck, m = 2000 kg
Initial velocity of the truck, u = 34 km/h = 9.44 m/s
Final velocity of the truck, v = 58 km/h = 16.11 m/s
(a) Change in truck's kinetic energy, 



(b) Change in momentum of the truck, 


Hence, this is the required solution.
Answer:
The size of the image is 1.04 m.
Explanation:
Given that,
Height of object = 2.40 m
Distance of object = 2.60 m
Radius of curvature =4.00 m
Focal length 
We need to calculate the image distance
Using mirror formula




We need to calculate the height of the image
Using formula of magnification

Put the value into the formula



Hence, The size of the image is 1.04 m