Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:


Answer:
i do belive its C
Explanation:
i remeber this question from somewhere also it makes the most sense
Answer: Vibrating
Explanation:
Sound is produced when an object vibrates. The sound vibrations cause waves of pressure that travel through a medium, such as air, water, wood or metal. Sound is a form of mechanical energy.
Answer: The first electromagnet has a more powerful current than
the second
Explanation:
Since the two electromagnets contain the same types of magnets and wires. If the magnet In the first moves much faster than the second. Therefore:
The first electromagnet has a more powerful current than the second
Because the induced EMF is proportional to the induced current.
Where the induced EMF depends on the speed of the magnet according to the formula below
EMF = BVL
So, increase in speed of the magnet will cause more powerful induced current and emf