Answer: Electromagnetic radiation
Explanation:
Electromagnetic radiation is a combination of oscillating electric and magnetic fields, which propagate through space carrying energy from one place to another.
To understand it better:
This radiation is spread thanks to the electromagnetic fields produced by moving electric charges and their sources can be natural or man-made.
It should be noted that the energy of electromagnetic radiation can vary and depending on its frequency it can be useful for various situations.
when the two waves interfere with eachother to make a dark spot the periodic difference of the two waves is π . the wave length for 2π is 600nm
. ie. for π difference it is 300nm
Reflection: a change in direction of a wave at a boundary between two different media.
sentence: i saw my reflection in the mirror.
refraction: the bending of light as it passes from one transparent substance into another.
sentence: when light goes through glass, it’s a refraction.
diffraction: the bending of waves around the corners of an obstacle.
sentence: spaced tracks on a CD act as a diffraction.
absorption: the process or action by which one thing absorbs or is absorbed by another.
sentence: heat waves hitting the beach usually give most of their energy to the sand.
interference: when two waves lay on each other and their energies are either added together or cancelled out.
sentence: interference waves can be observed with all types of waves.
standing wave: two waves moving in opposite directions. they both have the same amplitude or frequency.
sentence: plucking the string of a guitar is an example of standing waves.
resonance: increased amplitude that occurs when the frequency of a force is equal or close to a natural frequency.
sentence:a buzz in your car that only occurs at a certain speed is an example or resonance.
Since the two waves have equal amplitudes, if the crest of one wave
meets the trough of the other one, they'll add to produce a level of zero
at that location.
The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.